summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/cmsis/TARGET_STM/TARGET_STM32F3/stm32f3xx_hal_sdadc.c
blob: 56cc997d8828a8e962ced5f620ee66802d854ace (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
/**
  ******************************************************************************
  * @file    stm32f3xx_hal_sdadc.c
  * @author  MCD Application Team
  * @version V1.1.0
  * @date    12-Sept-2014
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Sigma-Delta Analog to Digital Convertor
  *          (SDADC) peripherals:
  *           + Initialization and Configuration
  *           + Regular Channels Configuration
  *           + Injected channels Configuration
  *           + Power saving
  *           + Regular/Injected Channels DMA Configuration
  *           + Interrupts and flags management
  *         
  @verbatim
  ==============================================================================
                    ##### SDADC specific features #####
  ==============================================================================           
  [..] 
  (#) 16-bit sigma delta architecture.
  (#) Self calibration.
  (#) Interrupt generation at the end of calibration, regular/injected conversion  
      and in case of overrun events.
  (#) Single and continuous conversion modes.
  (#) External trigger option with configurable polarity for injected conversion.
  (#) Multi mode (synchronized another SDADC with SDADC1).
  (#) DMA request generation during regular or injected channel conversion.

                     ##### How to use this driver #####
  ==============================================================================
  [..]
    *** Initialization ***
    ======================
    [..]
      (#) As prerequisite, fill in the HAL_SDADC_MspInit() :
        (+) Enable SDADCx clock interface with __SDADCx_CLK_ENABLE().
        (+) Configure SDADCx clock divider with HAL_RCCEx_PeriphCLKConfig.
        (+) Enable power on SDADC with HAL_PWREx_EnableSDADCAnalog().
        (+) Enable the clocks for the SDADC GPIOS with __GPIOx_CLK_ENABLE().
        (+) Configure these SDADC pins in analog mode using HAL_GPIO_Init().
        (+) If interrupt mode is used, enable and configure SDADC global
            interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
        (+) If DMA mode is used, configure DMA with HAL_DMA_Init and link it
            with SDADC handle using __HAL_LINKDMA.
      (#) Configure the SDADC low power mode, fast conversion mode, slow clock
          mode and SDADC1 reference voltage using the HAL_ADC_Init() function.
          If multiple SDADC are used, please configure first SDADC1 with the
          common reference voltage.
      (#) Prepare channel configurations (input mode, common mode, gain and
          offset) using HAL_SDADC_PrepareChannelConfig and associate channel
          with one configuration using HAL_SDADC_AssociateChannelConfig.

    *** Calibration ***
    ============================================
    [..]
      (#) Start calibration using HAL_SDADC_StartCalibration or
          HAL_SDADC_CalibrationStart_IT.
      (#) In polling mode, use HAL_SDADC_PollForCalibEvent to detect the end of
          calibration.
      (#) In interrupt mode, HAL_SDADC_CalibrationCpltCallback will be called at
          the end of calibration.

    *** Regular channel conversion ***
    ============================================
    [..]    
      (#) Select trigger for regular conversion using
          HAL_SDADC_SelectRegularTrigger.
      (#) Select regular channel and enable/disable continuous mode using
          HAL_SDADC_ConfigChannel.
      (#) Start regular conversion using HAL_SDADC_Start, HAL_SDADC_Start_IT
          or HAL_SDADC_Start_DMA.
      (#) In polling mode, use HAL_SDADC_PollForConversion to detect the end of
          regular conversion.
      (#) In interrupt mode, HAL_SDADC_ConvCpltCallback will be called at the 
          end of regular conversion.
      (#) Get value of regular conversion using HAL_SDADC_GetValue.
      (#) In DMA mode, HAL_SDADC_ConvHalfCpltCallback and 
          HAL_SDADC_ConvCpltCallback will be called respectively at the half 
          tranfer and at the tranfer complete.
      (#) Stop regular conversion using HAL_SDADC_Stop, HAL_SDADC_Stop_IT
          or HAL_SDADC_Stop_DMA.

    *** Injected channels conversion ***
    ============================================
    [..]    
      (#) Enable/disable delay on injected conversion using 
          HAL_SDADC_SelectInjectedDelay.
      (#) If external trigger is used for injected conversion, configure this
          trigger using HAL_SDADC_SelectInjectedExtTrigger.
      (#) Select trigger for injected conversion using
          HAL_SDADC_SelectInjectedTrigger.
      (#) Select injected channels and enable/disable continuous mode using
          HAL_SDADC_InjectedConfigChannel.
      (#) Start injected conversion using HAL_SDADC_InjectedStart,
          HAL_SDADC_InjectedStart_IT or HAL_SDADC_InjectedStart_DMA.
      (#) In polling mode, use HAL_SDADC_PollForInjectedConversion to detect the
          end of injected conversion.
      (#) In interrupt mode, HAL_SDADC_InjectedConvCpltCallback will be called
          at the end of injected conversion.
      (#) Get value of injected conversion and corresponding channel using 
          HAL_SDADC_InjectedGetValue.
      (#) In DMA mode, HAL_SDADC_InjectedConvHalfCpltCallback and 
          HAL_SDADC_InjectedConvCpltCallback will be called respectively at the
          half tranfer and at the tranfer complete.
      (#) Stop injected conversion using HAL_SDADC_InjectedStop, 
          HAL_SDADC_InjectedStop_IT or HAL_SDADC_InjectedStop_DMA.

    *** Multi mode regular channels conversions ***
    ======================================================
    [..]
      (#) Select type of multimode (SDADC1/SDADC2 or SDADC1/SDADC3) using
          HAL_SDADC_MultiModeConfigChannel.
      (#) Select software trigger for SDADC1 and synchronized trigger for
          SDADC2 (or SDADC3) using HAL_SDADC_SelectRegularTrigger.
      (#) Select regular channel for SDADC1 and SDADC2 (or SDADC3) using
          HAL_SDADC_ConfigChannel.
      (#) Start regular conversion for SDADC2 (or SDADC3) with HAL_SDADC_Start.
      (#) Start regular conversion for SDADC1 using HAL_SDADC_Start, 
          HAL_SDADC_Start_IT or HAL_SDADC_MultiModeStart_DMA.
      (#) In polling mode, use HAL_SDADC_PollForConversion to detect the end of
          regular conversion for SDADC1.
      (#) In interrupt mode, HAL_SDADC_ConvCpltCallback will be called at the 
          end of regular conversion for SDADC1.
      (#) Get value of regular conversions using HAL_SDADC_MultiModeGetValue.
      (#) In DMA mode, HAL_SDADC_ConvHalfCpltCallback and 
          HAL_SDADC_ConvCpltCallback will be called respectively at the half 
          tranfer and at the tranfer complete for SDADC1.
      (#) Stop regular conversion using HAL_SDADC_Stop, HAL_SDADC_Stop_IT
          or HAL_SDADC_MultiModeStop_DMA for SDADC1.
      (#) Stop regular conversion using HAL_SDADC_Stop for SDADC2 (or SDADC3).

    *** Multi mode injected channels conversions ***
    ======================================================
    [..]
      (#) Select type of multimode (SDADC1/SDADC2 or SDADC1/SDADC3) using
          HAL_SDADC_InjectedMultiModeConfigChannel.
      (#) Select software or external trigger for SDADC1 and synchronized 
          trigger for SDADC2 (or SDADC3) using HAL_SDADC_SelectInjectedTrigger.
      (#) Select injected channels for SDADC1 and SDADC2 (or SDADC3) using
          HAL_SDADC_InjectedConfigChannel.
      (#) Start injected conversion for SDADC2 (or SDADC3) with 
          HAL_SDADC_InjectedStart.
      (#) Start injected conversion for SDADC1 using HAL_SDADC_InjectedStart,
          HAL_SDADC_InjectedStart_IT or HAL_SDADC_InjectedMultiModeStart_DMA.
      (#) In polling mode, use HAL_SDADC_InjectedPollForConversion to detect 
          the end of injected conversion for SDADC1.
      (#) In interrupt mode, HAL_SDADC_InjectedConvCpltCallback will be called
          at the end of injected conversion for SDADC1.
      (#) Get value of injected conversions using 
          HAL_SDADC_InjectedMultiModeGetValue.
      (#) In DMA mode, HAL_SDADC_InjectedConvHalfCpltCallback and 
          HAL_SDADC_InjectedConvCpltCallback will be called respectively at the
          half tranfer and at the tranfer complete for SDADC1.
      (#) Stop injected conversion using HAL_SDADC_InjectedStop, 
          HAL_SDADC_InjectedStop_IT or HAL_SDADC_InjecteddMultiModeStop_DMA
          for SDADC1.
      (#) Stop injected conversion using HAL_SDADC_InjectedStop for SDADC2
          (or SDADC3).

    @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */ 

/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_hal.h"

/** @addtogroup STM32F3xx_HAL_Driver
  * @{
  */

#ifdef HAL_SDADC_MODULE_ENABLED
#if defined(STM32F373xC) || defined(STM32F378xx)
/** @defgroup SDADC SDADC HAL module driver
  * @brief SDADC HAL driver modules
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup SDADC_Private_Define SDADC Private Define
 * @{
 */
#define SDADC_TIMEOUT          200
#define SDADC_CONFREG_OFFSET   0x00000020
#define SDADC_JDATAR_CH_OFFSET 24
#define SDADC_MSB_MASK         0xFFFF0000
#define SDADC_LSB_MASK         0x0000FFFF
/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup SDADC_Private_Functions SDADC Private Functions
  * @{
  */

static HAL_StatusTypeDef SDADC_EnterInitMode(SDADC_HandleTypeDef* hsdadc);
static void              SDADC_ExitInitMode(SDADC_HandleTypeDef* hsdadc);
static uint32_t          SDADC_GetInjChannelsNbr(uint32_t Channels);
static HAL_StatusTypeDef SDADC_RegConvStart(SDADC_HandleTypeDef* hsdadc);
static HAL_StatusTypeDef SDADC_RegConvStop(SDADC_HandleTypeDef* hsdadc);
static HAL_StatusTypeDef SDADC_InjConvStart(SDADC_HandleTypeDef* hsdadc);
static HAL_StatusTypeDef SDADC_InjConvStop(SDADC_HandleTypeDef* hsdadc);
static void              SDADC_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma);
static void              SDADC_DMARegularConvCplt(DMA_HandleTypeDef *hdma);
static void              SDADC_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma);
static void              SDADC_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma);
static void              SDADC_DMAError(DMA_HandleTypeDef *hdma);
/**
  * @}
  */

/* Exported functions ---------------------------------------------------------*/

/** @defgroup SDADC_Exported_Functions SDADC Exported Functions
  * @{
  */

/** @defgroup SDADC_Exported_Functions_Group1 Initialization and de-initialization functions
 *  @brief    Initialization and de-initialization functions 
 *
@verbatim    
  ===============================================================================
              ##### Initialization and de-initialization functions #####
  ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize the SDADC. 
      (+) De-initialize the SDADC. 
         
@endverbatim
  * @{
  */

/**
  * @brief  Initializes the SDADC according to the specified
  *         parameters in the SDADC_InitTypeDef structure.
  * @note   If multiple SDADC are used, please configure first SDADC1 to set
  *         the common reference voltage.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_SDADC_Init(SDADC_HandleTypeDef* hsdadc)
{
  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_LOWPOWER_MODE(hsdadc->Init.IdleLowPowerMode));
  assert_param(IS_SDADC_FAST_CONV_MODE(hsdadc->Init.FastConversionMode));
  assert_param(IS_SDADC_SLOW_CLOCK_MODE(hsdadc->Init.SlowClockMode));
  assert_param(IS_SDADC_VREF(hsdadc->Init.ReferenceVoltage));
  
  /* Check SDADC handle */
  if(hsdadc == HAL_NULL)
  {
    return HAL_ERROR;
  }
  
  /* Initialize SDADC variables with default values */
  hsdadc->RegularContMode     = SDADC_CONTINUOUS_CONV_OFF;
  hsdadc->InjectedContMode    = SDADC_CONTINUOUS_CONV_OFF;
  hsdadc->InjectedChannelsNbr = 1;
  hsdadc->InjConvRemaining    = 1;
  hsdadc->RegularTrigger      = SDADC_SOFTWARE_TRIGGER;
  hsdadc->InjectedTrigger     = SDADC_SOFTWARE_TRIGGER;
  hsdadc->ExtTriggerEdge      = SDADC_EXT_TRIG_RISING_EDGE;
  hsdadc->RegularMultimode    = SDADC_MULTIMODE_SDADC1_SDADC2;
  hsdadc->InjectedMultimode   = SDADC_MULTIMODE_SDADC1_SDADC2;
  hsdadc->ErrorCode           = SDADC_ERROR_NONE;
    
  /* Call MSP init function */
  HAL_SDADC_MspInit(hsdadc);
  
  /* Set idle low power and slow clock modes */
  hsdadc->Instance->CR1 &= ~(SDADC_CR1_SBI|SDADC_CR1_PDI|SDADC_CR1_SLOWCK);
  hsdadc->Instance->CR1 |= (hsdadc->Init.IdleLowPowerMode | \
                            hsdadc->Init.SlowClockMode);

  /* Set fast conversion mode */
  hsdadc->Instance->CR2 &= ~(SDADC_CR2_FAST);
  hsdadc->Instance->CR2 |= hsdadc->Init.FastConversionMode;

  /* Set reference voltage only for SDADC1 */
  if(hsdadc->Instance == SDADC1)
  {
    hsdadc->Instance->CR1 &= ~(SDADC_CR1_REFV);
    hsdadc->Instance->CR1 |= hsdadc->Init.ReferenceVoltage;

    /* Wait at least 2ms before setting ADON */
    HAL_Delay(2);
  }
  
  /* Enable SDADC */
  hsdadc->Instance->CR2 |= SDADC_CR2_ADON;

  /* Wait end of stabilization */
  while((hsdadc->Instance->ISR & SDADC_ISR_STABIP) != 0);
  
  /* Set SDADC to ready state */
  hsdadc->State = HAL_SDADC_STATE_READY;
  
  /* Return HAL status */
  return HAL_OK;
}
  
/**
  * @brief  De-initializes the SDADC.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_SDADC_DeInit(SDADC_HandleTypeDef* hsdadc)
{
  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  
  /* Check SDADC handle */
  if(hsdadc == HAL_NULL)
  {
    return HAL_ERROR;
  }

  /* Disable the SDADC */
  hsdadc->Instance->CR2 &= ~(SDADC_CR2_ADON);

  /* Reset all registers */
  hsdadc->Instance->CR1      = 0x00000000;
  hsdadc->Instance->CR2      = 0x00000000;
  hsdadc->Instance->JCHGR    = 0x00000001;
  hsdadc->Instance->CONF0R   = 0x00000000;
  hsdadc->Instance->CONF1R   = 0x00000000;
  hsdadc->Instance->CONF2R   = 0x00000000;
  hsdadc->Instance->CONFCHR1 = 0x00000000;
  hsdadc->Instance->CONFCHR2 = 0x00000000;

  /* Call MSP deinit function */
  HAL_SDADC_MspDeInit(hsdadc);

  /* Set SDADC in reset state */
  hsdadc->State = HAL_SDADC_STATE_RESET;

  /* Return function status */
  return HAL_OK;
}
    
/**
  * @brief  Initializes the SDADC MSP.
  * @param  hsdadc : SDADC handle
  * @retval None
  */
__weak void HAL_SDADC_MspInit(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_MspInit could be implemented in the user file.
   */ 
}

/**
  * @brief  De-initializes the SDADC MSP.
  * @param  hsdadc : SDADC handle
  * @retval None
  */
__weak void HAL_SDADC_MspDeInit(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_MspDeInit could be implemented in the user file.
   */ 
}

/**
  * @}
  */

/** @defgroup SDADC_Exported_Functions_Group2 peripheral control functions
 *  @brief    Peripheral control functions
 *
@verbatim   
  ===============================================================================
              ##### Peripheral control functions #####
  ===============================================================================  
    [..]  This section provides functions allowing to:
      (+) Program on of the three different configurations for channels.
      (+) Associate channel to one of configurations.
      (+) Select regular and injected channels.
      (+) Enable/disable continuous mode for regular and injected conversions.
      (+) Select regular and injected triggers.
      (+) Select and configure injected external trigger.
      (+) Enable/disable delay addition for injected conversions.
      (+) Configure multimode.

@endverbatim
  * @{
  */

/**
  * @brief  This function allows the user to set parameters for a configuration.
  *         Parameters are input mode, common mode, gain and offset.
  * @note   This function should be called only when SDADC instance is in idle state
  *         (neither calibration nor regular or injected conversion ongoing)
  * @param  hsdadc : SDADC handle.
  * @param  ConfIndex : Index of configuration to modify.
  *         This parameter can be a value of @ref SDADC_ConfIndex.
  * @param  ConfParamStruct : Parameters to apply for this configuration.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_PrepareChannelConfig(SDADC_HandleTypeDef *hsdadc, 
                                                 uint32_t ConfIndex,
                                                 SDADC_ConfParamTypeDef* ConfParamStruct)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t          tmp = 0;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_CONF_INDEX(ConfIndex));
  assert_param(ConfParamStruct != HAL_NULL);
  assert_param(IS_SDADC_INPUT_MODE(ConfParamStruct->InputMode));
  assert_param(IS_SDADC_GAIN(ConfParamStruct->Gain));
  assert_param(IS_SDADC_COMMON_MODE(ConfParamStruct->CommonMode));
  assert_param(IS_SDADC_OFFSET_VALUE(ConfParamStruct->Offset));

  /* Check SDADC state is ready */
  if(hsdadc->State != HAL_SDADC_STATE_READY)
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      /* Program configuration register with parameters */
      tmp = (uint32_t)((uint32_t)(hsdadc->Instance) + \
                       SDADC_CONFREG_OFFSET + \
                       (uint32_t)(ConfIndex << 2));
      *(__IO uint32_t *) (tmp) = (uint32_t) (ConfParamStruct->InputMode | \
                                             ConfParamStruct->Gain | \
                                             ConfParamStruct->CommonMode | \
                                             ConfParamStruct->Offset);
      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows the user to associate a channel with one of the
  *         available configurations.
  * @note   This function should be called only when SDADC instance is in idle state
  *         (neither calibration nor regular or injected conversion ongoing)
  * @param  hsdadc : SDADC handle.
  * @param  Channel : Channel to associate with configuration.
  *         This parameter can be a value of @ref SDADC_Channel_Selection.
  * @param  ConfIndex : Index of configuration to associate with channel.
  *         This parameter can be a value of @ref SDADC_ConfIndex.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_AssociateChannelConfig(SDADC_HandleTypeDef *hsdadc,
                                                   uint32_t Channel,
                                                   uint32_t ConfIndex)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t          channelnum = 0;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_REGULAR_CHANNEL(Channel));
  assert_param(IS_SDADC_CONF_INDEX(ConfIndex));

  /* Check SDADC state is ready */
  if(hsdadc->State != HAL_SDADC_STATE_READY)
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      /* Program channel configuration register according parameters */
      if(Channel != SDADC_CHANNEL_8)
      {
        /* Get channel number */
        channelnum = (uint32_t)(Channel>>16);

        /* Set the channel configuration */
        hsdadc->Instance->CONFCHR1 &= (uint32_t) ~(SDADC_CONFCHR1_CONFCH0 << (channelnum << 2));
        hsdadc->Instance->CONFCHR1 |= (uint32_t) (ConfIndex << (channelnum << 2));
      }
      else
      {
        hsdadc->Instance->CONFCHR2 = (uint32_t) (ConfIndex);
      }      
      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to select channel for regular conversion and
  *         to enable/disable continuous mode for regular conversion.
  * @param  hsdadc : SDADC handle.
  * @param  Channel : Channel for regular conversion.
  *         This parameter can be a value of @ref SDADC_Channel_Selection.
  * @param  ContinuousMode : Enable/disable continuous mode for regular conversion.
  *         This parameter can be a value of @ref SDADC_ContinuousMode.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_ConfigChannel(SDADC_HandleTypeDef *hsdadc,
                                          uint32_t Channel,
                                          uint32_t ContinuousMode)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_REGULAR_CHANNEL(Channel));
  assert_param(IS_SDADC_CONTINUOUS_MODE(ContinuousMode));
  
  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_RESET) && (hsdadc->State != HAL_SDADC_STATE_ERROR))
  {
    /* Set RCH[3:0] and RCONT bits in SDADC_CR2 */
    hsdadc->Instance->CR2 &= (uint32_t) ~(SDADC_CR2_RCH | SDADC_CR2_RCONT);
    if(ContinuousMode == SDADC_CONTINUOUS_CONV_ON)
    {
      hsdadc->Instance->CR2 |= (uint32_t) ((Channel & SDADC_MSB_MASK) | SDADC_CR2_RCONT);    
    }
    else
    {
      hsdadc->Instance->CR2 |= (uint32_t) ((Channel & SDADC_MSB_MASK));    
    }
    /* Store continuous mode information */
    hsdadc->RegularContMode = ContinuousMode;
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to select channels for injected conversion and
  *         to enable/disable continuous mode for injected conversion.
  * @param  hsdadc : SDADC handle.
  * @param  Channel : Channels for injected conversion.
  *         This parameter can be a values combination of @ref SDADC_Channel_Selection.
  * @param  ContinuousMode : Enable/disable continuous mode for injected conversion.
  *         This parameter can be a value of @ref SDADC_ContinuousMode.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedConfigChannel(SDADC_HandleTypeDef *hsdadc,
                                                  uint32_t Channel,
                                                  uint32_t ContinuousMode)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_INJECTED_CHANNEL(Channel));
  assert_param(IS_SDADC_CONTINUOUS_MODE(ContinuousMode));
  
  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_RESET) && (hsdadc->State != HAL_SDADC_STATE_ERROR))
  {
    /* Set JCHG[8:0] bits in SDADC_JCHG */
    hsdadc->Instance->JCHGR = (uint32_t) (Channel & SDADC_LSB_MASK);
    /* Set or clear JCONT bit in SDADC_CR2 */
    if(ContinuousMode == SDADC_CONTINUOUS_CONV_ON)
    {
      hsdadc->Instance->CR2 |= SDADC_CR2_JCONT;    
    }
    else
    {
      hsdadc->Instance->CR2 &= ~(SDADC_CR2_JCONT);
    }
    /* Store continuous mode information */
    hsdadc->InjectedContMode = ContinuousMode;
    /* Store number of injected channels */
    hsdadc->InjectedChannelsNbr = SDADC_GetInjChannelsNbr(Channel);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to select trigger for regular conversions.
  * @note   This function should not be called if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  Trigger : Trigger for regular conversions.
  *         This parameter can be one of the following value :
  *            @arg SDADC_SOFTWARE_TRIGGER : Software trigger.
  *            @arg SDADC_SYNCHRONOUS_TRIGGER : Synchronous with SDADC1 (only for SDADC2 and SDADC3).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_SelectRegularTrigger(SDADC_HandleTypeDef *hsdadc, uint32_t Trigger)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_REGULAR_TRIGGER(Trigger));

  /* Check parameters compatibility */
  if((hsdadc->Instance == SDADC1) && (Trigger == SDADC_SYNCHRONOUS_TRIGGER))
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_CALIB) || \
          (hsdadc->State == HAL_SDADC_STATE_INJ))
  {
    /* Store regular trigger information */
    hsdadc->RegularTrigger = Trigger;
  }
  else
  {
    status = HAL_ERROR;    
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to select trigger for injected conversions.
  * @note   This function should not be called if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  Trigger : Trigger for injected conversions.
  *         This parameter can be one of the following value :
  *            @arg SDADC_SOFTWARE_TRIGGER : Software trigger.
  *            @arg SDADC_SYNCHRONOUS_TRIGGER : Synchronous with SDADC1 (only for SDADC2 and SDADC3).
  *            @arg SDADC_EXTERNAL_TRIGGER : External trigger.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_SelectInjectedTrigger(SDADC_HandleTypeDef *hsdadc, uint32_t Trigger)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_INJECTED_TRIGGER(Trigger));

  /* Check parameters compatibility */
  if((hsdadc->Instance == SDADC1) && (Trigger == SDADC_SYNCHRONOUS_TRIGGER))
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_CALIB) || \
          (hsdadc->State == HAL_SDADC_STATE_REG))
  {
    /* Store regular trigger information */
    hsdadc->InjectedTrigger = Trigger;
  }
  else
  {
    status = HAL_ERROR;    
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to select and configure injected external trigger.
  * @note   This function should be called only when SDADC instance is in idle state
  *         (neither calibration nor regular or injected conversion ongoing)
  * @param  hsdadc : SDADC handle.
  * @param  InjectedExtTrigger : External trigger for injected conversions.
  *         This parameter can be a value of @ref SDADC_InjectedExtTrigger.
  * @param  ExtTriggerEdge : Edge of external injected trigger.
  *         This parameter can be a value of @ref SDADC_ExtTriggerEdge.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_SelectInjectedExtTrigger(SDADC_HandleTypeDef *hsdadc,
                                                     uint32_t InjectedExtTrigger,
                                                     uint32_t ExtTriggerEdge)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_EXT_INJEC_TRIG(InjectedExtTrigger));
  assert_param(IS_SDADC_EXT_TRIG_EDGE(ExtTriggerEdge));

  /* Check SDADC state */
  if(hsdadc->State == HAL_SDADC_STATE_READY)
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      /* Set JEXTSEL[2:0] bits in SDADC_CR2 register */
      hsdadc->Instance->CR2 &= ~(SDADC_CR2_JEXTSEL);
      hsdadc->Instance->CR2 |= InjectedExtTrigger;

      /* Store external trigger edge information */
      hsdadc->ExtTriggerEdge = ExtTriggerEdge;

      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to enable/disable delay addition for injected conversions.
  * @note   This function should be called only when SDADC instance is in idle state
  *         (neither calibration nor regular or injected conversion ongoing)
  * @param  hsdadc : SDADC handle.
  * @param  InjectedDelay : Enable/disable delay for injected conversions.
  *         This parameter can be a value of @ref SDADC_InjectedDelay.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_SelectInjectedDelay(SDADC_HandleTypeDef *hsdadc,
                                                uint32_t InjectedDelay)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_INJECTED_DELAY(InjectedDelay));

  /* Check SDADC state */
  if(hsdadc->State == HAL_SDADC_STATE_READY)
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      /* Set JDS bit in SDADC_CR2 register */
      hsdadc->Instance->CR2 &= ~(SDADC_CR2_JDS);
      hsdadc->Instance->CR2 |= InjectedDelay;

      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to configure multimode for regular conversions.
  * @note   This function should not be called if regular conversion is ongoing
  *         and should be could only for SDADC1.
  * @param  hsdadc : SDADC handle.
  * @param  MultimodeType : Type of multimode for regular conversions.
  *         This parameter can be a value of @ref SDADC_MultimodeType.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_MultiModeConfigChannel(SDADC_HandleTypeDef* hsdadc,
                                                   uint32_t MultimodeType)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_MULTIMODE_TYPE(MultimodeType));

  /* Check instance is SDADC1 */
  if(hsdadc->Instance != SDADC1)
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_CALIB) || \
          (hsdadc->State == HAL_SDADC_STATE_INJ))
  {
    /* Store regular trigger information */
    hsdadc->RegularMultimode = MultimodeType;
  }
  else
  {
    status = HAL_ERROR;    
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to configure multimode for injected conversions.
  * @note   This function should not be called if injected conversion is ongoing
  *         and should be could only for SDADC1.
  * @param  hsdadc : SDADC handle.
  * @param  MultimodeType : Type of multimode for injected conversions.
  *         This parameter can be a value of @ref SDADC_MultimodeType.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedMultiModeConfigChannel(SDADC_HandleTypeDef* hsdadc,
                                                           uint32_t MultimodeType)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_MULTIMODE_TYPE(MultimodeType));

  /* Check instance is SDADC1 */
  if(hsdadc->Instance != SDADC1)
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_CALIB) || \
          (hsdadc->State == HAL_SDADC_STATE_REG))
  {
    /* Store regular trigger information */
    hsdadc->InjectedMultimode = MultimodeType;
  }
  else
  {
    status = HAL_ERROR;    
  }
  /* Return function status */
  return status;
}

/**
  * @}
  */

/** @defgroup SDADC_Exported_Functions_Group3 Input and Output operation functions
 *  @brief    I/O operation Control functions 
 *
@verbatim   
  ===============================================================================
              ##### I/O operation functions #####
  ===============================================================================  
    [..]  This section provides functions allowing to:
      (+) Start calibration.
      (+) Poll for the end of calibration.
      (+) Start calibration and enable interrupt.
      (+) Start conversion of regular/injected channel.
      (+) Poll for the end of regular/injected conversion.
      (+) Stop conversion of regular/injected channel.
      (+) Start conversion of regular/injected channel and enable interrupt.
      (+) Stop conversion of regular/injected channel and disable interrupt.
      (+) Start conversion of regular/injected channel and enable DMA transfer.
      (+) Stop conversion of regular/injected channel and disable DMA transfer.
      (+) Start multimode and enable DMA transfer for regular/injected conversion.
      (+) Stop multimode and disable DMA transfer for regular/injected conversion..
      (+) Get result of regular channel conversion.
      (+) Get result of injected channel conversion.
      (+) Get result of multimode conversion.
      (+) Handle SDADC interrupt request.
      (+) Callbacks for calibration and regular/injected conversions.

@endverbatim
  * @{
  */

/**
  * @brief  This function allows to start calibration in polling mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         (neither calibration nor regular or injected conversion ongoing).
  * @param  hsdadc : SDADC handle.
  * @param  CalibrationSequence : Calibration sequence.
  *         This parameter can be a value of @ref SDADC_CalibrationSequence.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_CalibrationStart(SDADC_HandleTypeDef *hsdadc,
                                             uint32_t CalibrationSequence)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_CALIB_SEQUENCE(CalibrationSequence));

  /* Check SDADC state */
  if(hsdadc->State == HAL_SDADC_STATE_READY)
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      /* Set CALIBCNT[1:0] bits in SDADC_CR2 register */
      hsdadc->Instance->CR2 &= ~(SDADC_CR2_CALIBCNT);
      hsdadc->Instance->CR2 |= CalibrationSequence;

      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);

      /* Set STARTCALIB in SDADC_CR2 */
      hsdadc->Instance->CR2 |= SDADC_CR2_STARTCALIB;

      /* Set SDADC in calibration state */
      hsdadc->State = HAL_SDADC_STATE_CALIB;
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to poll for the end of calibration.
  * @note   This function should be called only if calibration is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  Timeout : Timeout value in milliseconds.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_PollForCalibEvent(SDADC_HandleTypeDef* hsdadc, uint32_t Timeout)
{
  uint32_t tickstart;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if(hsdadc->State != HAL_SDADC_STATE_CALIB)
  {
    /* Return error status */
    return HAL_ERROR;
  }
  else
  {
    /* Get timeout */
    tickstart = HAL_GetTick();  

    /* Wait EOCALF bit in SDADC_ISR register */
    while((hsdadc->Instance->ISR & SDADC_ISR_EOCALF) != SDADC_ISR_EOCALF)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    /* Set CLREOCALF bit in SDADC_CLRISR register */
    hsdadc->Instance->CLRISR |= SDADC_ISR_CLREOCALF;

    /* Set SDADC in ready state */
    hsdadc->State = HAL_SDADC_STATE_READY;

    /* Return function status */
    return HAL_OK;
  }
}

/**
  * @brief  This function allows to start calibration in interrupt mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         (neither calibration nor regular or injected conversion ongoing).
  * @param  hsdadc : SDADC handle.
  * @param  CalibrationSequence : Calibration sequence.
  *         This parameter can be a value of @ref SDADC_CalibrationSequence.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_CalibrationStart_IT(SDADC_HandleTypeDef *hsdadc,
                                                uint32_t CalibrationSequence)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(IS_SDADC_CALIB_SEQUENCE(CalibrationSequence));

  /* Check SDADC state */
  if(hsdadc->State == HAL_SDADC_STATE_READY)
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      /* Set CALIBCNT[1:0] bits in SDADC_CR2 register */
      hsdadc->Instance->CR2 &= ~(SDADC_CR2_CALIBCNT);
      hsdadc->Instance->CR2 |= CalibrationSequence;

      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);

      /* Set EOCALIE bit in SDADC_CR1 register */
      hsdadc->Instance->CR1 |= SDADC_CR1_EOCALIE;

      /* Set STARTCALIB in SDADC_CR2 */
      hsdadc->Instance->CR2 |= SDADC_CR2_STARTCALIB;

      /* Set SDADC in calibration state */
      hsdadc->State = HAL_SDADC_STATE_CALIB;
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start regular conversion in polling mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_Start(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State == HAL_SDADC_STATE_READY) || \
     (hsdadc->State == HAL_SDADC_STATE_INJ))
  {
    /* Start regular conversion */
    status = SDADC_RegConvStart(hsdadc);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to poll for the end of regular conversion.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  Timeout : Timeout value in milliseconds.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_PollForConversion(SDADC_HandleTypeDef* hsdadc, uint32_t Timeout)
{
  uint32_t tickstart;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_REG) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    return HAL_ERROR;
  }
  else
  {
    /* Get timeout */
    tickstart = HAL_GetTick();  

    /* Wait REOCF bit in SDADC_ISR register */
    while((hsdadc->Instance->ISR & SDADC_ISR_REOCF) != SDADC_ISR_REOCF)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    /* Check if overrun occurs */
    if((hsdadc->Instance->ISR & SDADC_ISR_ROVRF) == SDADC_ISR_ROVRF)
    {
      /* Update error code and call error callback */
      hsdadc->ErrorCode = SDADC_ERROR_REGULAR_OVERRUN;
      HAL_SDADC_ErrorCallback(hsdadc);

      /* Set CLRROVRF bit in SDADC_CLRISR register */
      hsdadc->Instance->CLRISR |= SDADC_ISR_CLRROVRF;
    }
    /* Update SDADC state only if not continuous conversion and SW trigger */
    if((hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
       (hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER))
    {
      hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_REG) ? \
                      HAL_SDADC_STATE_READY : HAL_SDADC_STATE_INJ;
    }
    /* Return function status */
    return HAL_OK;
  }
}

/**
  * @brief  This function allows to stop regular conversion in polling mode.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_Stop(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_REG) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop regular conversion */
    status = SDADC_RegConvStop(hsdadc);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start regular conversion in interrupt mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_Start_IT(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State == HAL_SDADC_STATE_READY) || \
     (hsdadc->State == HAL_SDADC_STATE_INJ))
  {
    /* Set REOCIE and ROVRIE bits in SDADC_CR1 register */
    hsdadc->Instance->CR1 |= (uint32_t) (SDADC_CR1_REOCIE | SDADC_CR1_ROVRIE);

    /* Start regular conversion */
    status = SDADC_RegConvStart(hsdadc);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop regular conversion in interrupt mode.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_Stop_IT(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_REG) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Clear REOCIE and ROVRIE bits in SDADC_CR1 register */
    hsdadc->Instance->CR1 &= (uint32_t) ~(SDADC_CR1_REOCIE | SDADC_CR1_ROVRIE);

    /* Stop regular conversion */
    status = SDADC_RegConvStop(hsdadc);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start regular conversion in DMA mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  pData : The destination buffer address.
  * @param  Length : The length of data to be transferred from SDADC peripheral to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_Start_DMA(SDADC_HandleTypeDef *hsdadc, uint32_t *pData,
                                      uint32_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(pData != HAL_NULL);
  assert_param(Length != 0);

  /* Check that DMA is not enabled for injected conversion */
  if((hsdadc->Instance->CR1 & SDADC_CR1_JDMAEN) == SDADC_CR1_JDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
          (Length != 1))
  {
    status = HAL_ERROR;
  }
  else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_INJ))
  {
    /* Set callbacks on DMA handler */
    hsdadc->hdma->XferCpltCallback = SDADC_DMARegularConvCplt;
    hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
    if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
    {
      hsdadc->hdma->XferHalfCpltCallback = SDADC_DMARegularHalfConvCplt;
    }
    
    /* Set RDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 |= SDADC_CR1_RDMAEN;

    /* Start DMA in interrupt mode */
    if(HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->RDATAR, \
                        (uint32_t) pData, Length) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start regular conversion */
      status = SDADC_RegConvStart(hsdadc);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop regular conversion in DMA mode.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_Stop_DMA(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_REG) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Clear RDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 &= ~(SDADC_CR1_RDMAEN);

    /* Stop current DMA transfer */
    if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Stop regular conversion */
      status = SDADC_RegConvStop(hsdadc);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get regular conversion value.
  * @param  hsdadc : SDADC handle.
  * @retval Regular conversion value
  */
uint32_t HAL_SDADC_GetValue(SDADC_HandleTypeDef *hsdadc)
{
  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Return regular conversion value */
  return hsdadc->Instance->RDATAR;
}

/**
  * @brief  This function allows to start injected conversion in polling mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedStart(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State == HAL_SDADC_STATE_READY) || \
     (hsdadc->State == HAL_SDADC_STATE_REG))
  {
    /* Start injected conversion */
    status = SDADC_InjConvStart(hsdadc);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to poll for the end of injected conversion.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  Timeout : Timeout value in milliseconds.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_PollForInjectedConversion(SDADC_HandleTypeDef* hsdadc,
                                                      uint32_t Timeout)
{
  uint32_t tickstart;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    return HAL_ERROR;
  }
  else
  {
    /* Get timeout */
    tickstart = HAL_GetTick();  

    /* Wait JEOCF bit in SDADC_ISR register */
    while((hsdadc->Instance->ISR & SDADC_ISR_JEOCF) != SDADC_ISR_JEOCF)
    {
      /* Check the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
        {
          /* Return timeout status */
          return HAL_TIMEOUT;
        }
      }
    }
    /* Check if overrun occurs */
    if((hsdadc->Instance->ISR & SDADC_ISR_JOVRF) == SDADC_ISR_JOVRF)
    {
      /* Update error code and call error callback */
      hsdadc->ErrorCode = SDADC_ERROR_INJECTED_OVERRUN;
      HAL_SDADC_ErrorCallback(hsdadc);

      /* Set CLRJOVRF bit in SDADC_CLRISR register */
      hsdadc->Instance->CLRISR |= SDADC_ISR_CLRJOVRF;
    }
    /* Update remaining injected conversions */
    hsdadc->InjConvRemaining--;
    if(hsdadc->InjConvRemaining == 0)
    {
      /* end of injected sequence, reset the value */
      hsdadc->InjConvRemaining = hsdadc->InjectedChannelsNbr;
    }

    /* Update SDADC state only if not continuous conversion, SW trigger */
    /* and end of injected sequence */
    if((hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
       (hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
       (hsdadc->InjConvRemaining == hsdadc->InjectedChannelsNbr))
    {
      hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_INJ) ? \
                      HAL_SDADC_STATE_READY : HAL_SDADC_STATE_REG;
    }
    /* Return function status */
    return HAL_OK;
  }
}

/**
  * @brief  This function allows to stop injected conversion in polling mode.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedStop(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Stop injected conversion */
    status = SDADC_InjConvStop(hsdadc);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start injected conversion in interrupt mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedStart_IT(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State == HAL_SDADC_STATE_READY) || \
     (hsdadc->State == HAL_SDADC_STATE_REG))
  {
    /* Set JEOCIE and JOVRIE bits in SDADC_CR1 register */
    hsdadc->Instance->CR1 |= (uint32_t) (SDADC_CR1_JEOCIE | SDADC_CR1_JOVRIE);

    /* Start injected conversion */
    status = SDADC_InjConvStart(hsdadc);
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop injected conversion in interrupt mode.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedStop_IT(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Clear JEOCIE and JOVRIE bits in SDADC_CR1 register */
    hsdadc->Instance->CR1 &= (uint32_t) ~(SDADC_CR1_JEOCIE | SDADC_CR1_JOVRIE);

    /* Stop injected conversion */
    status = SDADC_InjConvStop(hsdadc);
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to start injected conversion in DMA mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  pData : The destination buffer address.
  * @param  Length : The length of data to be transferred from SDADC peripheral to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedStart_DMA(SDADC_HandleTypeDef *hsdadc, uint32_t *pData,
                                              uint32_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(pData != HAL_NULL);
  assert_param(Length != 0);

  /* Check that DMA is not enabled for regular conversion */
  if((hsdadc->Instance->CR1 & SDADC_CR1_RDMAEN) == SDADC_CR1_RDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
          (Length > hsdadc->InjectedChannelsNbr))
  {
    status = HAL_ERROR;
  }
  else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_REG))
  {
    /* Set callbacks on DMA handler */
    hsdadc->hdma->XferCpltCallback = SDADC_DMAInjectedConvCplt;
    hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
    if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
    {
      hsdadc->hdma->XferHalfCpltCallback = SDADC_DMAInjectedHalfConvCplt;
    }
    
    /* Set JDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 |= SDADC_CR1_JDMAEN;

    /* Start DMA in interrupt mode */
    if(HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->JDATAR, \
                        (uint32_t) pData, Length) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start injected conversion */
      status = SDADC_InjConvStart(hsdadc);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop injected conversion in DMA mode.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedStop_DMA(SDADC_HandleTypeDef *hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check SDADC state */
  if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
     (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Clear JDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 &= ~(SDADC_CR1_JDMAEN);

    /* Stop current DMA transfer */
    if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Stop injected conversion */
      status = SDADC_InjConvStop(hsdadc);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get injected conversion value.
  * @param  hsdadc : SDADC handle.
  * @param  Channel : Corresponding channel of injected conversion.
  * @retval Injected conversion value
  */
uint32_t HAL_SDADC_InjectedGetValue(SDADC_HandleTypeDef *hsdadc, uint32_t* Channel)
{
  uint32_t value = 0;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(Channel != HAL_NULL);

  /* Read SDADC_JDATAR register and extract channel and conversion value */
  value = hsdadc->Instance->JDATAR;
  *Channel = ((value & SDADC_JDATAR_JDATACH) >> SDADC_JDATAR_CH_OFFSET);
  value &= SDADC_JDATAR_JDATA;
  
  /* Return injected conversion value */
  return value;
}

/**
  * @brief  This function allows to start multimode regular conversions in DMA mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  pData : The destination buffer address.
  * @param  Length : The length of data to be transferred from SDADC peripheral to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_MultiModeStart_DMA(SDADC_HandleTypeDef* hsdadc, uint32_t* pData,
                                               uint32_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(pData != HAL_NULL);
  assert_param(Length != 0);

  /* Check instance is SDADC1 */
  if(hsdadc->Instance != SDADC1)
  {
    status = HAL_ERROR;
  }
  /* Check that DMA is not enabled for injected conversion */
  else if((hsdadc->Instance->CR1 & SDADC_CR1_JDMAEN) == SDADC_CR1_JDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
          (Length != 1))
  {
    status = HAL_ERROR;
  }
  else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_INJ))
  {
    /* Set callbacks on DMA handler */
    hsdadc->hdma->XferCpltCallback = SDADC_DMARegularConvCplt;
    hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
    if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
    {
      hsdadc->hdma->XferHalfCpltCallback = SDADC_DMARegularHalfConvCplt;
    }
    /* Set RDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 |= SDADC_CR1_RDMAEN;

    /* Start DMA in interrupt mode */
    if(hsdadc->RegularMultimode == SDADC_MULTIMODE_SDADC1_SDADC2)
    {
      status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->RDATA12R, \
                                (uint32_t) pData, Length);
    }
    else
    {
      status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->RDATA13R, \
                                (uint32_t) pData, Length);
    }
    if(status != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start regular conversion */
      status = SDADC_RegConvStart(hsdadc);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop multimode regular conversions in DMA mode.
  * @note   This function should be called only if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_MultiModeStop_DMA(SDADC_HandleTypeDef* hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check instance is SDADC1 */
  if(hsdadc->Instance != SDADC1)
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State != HAL_SDADC_STATE_REG) && \
          (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Clear RDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 &= ~(SDADC_CR1_RDMAEN);

    /* Stop current DMA transfer */
    if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Stop regular conversion */
      status = SDADC_RegConvStop(hsdadc);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get multimode regular conversion value.
  * @param  hsdadc : SDADC handle.
  * @retval Multimode regular conversion value
  */
uint32_t HAL_SDADC_MultiModeGetValue(SDADC_HandleTypeDef* hsdadc)
{
  uint32_t value = 0;
  
  /* Check parameters and check instance is SDADC1 */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(hsdadc->Instance == SDADC1);

  /* read multimode regular value */
  value = (hsdadc->RegularMultimode == SDADC_MULTIMODE_SDADC1_SDADC2) ? \
          hsdadc->Instance->RDATA12R : hsdadc->Instance->RDATA13R;

  /* Return multimode regular conversions value */
  return value;
}

/**
  * @brief  This function allows to start multimode injected conversions in DMA mode.
  * @note   This function should be called only when SDADC instance is in idle state
  *         or if regular conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @param  pData : The destination buffer address.
  * @param  Length : The length of data to be transferred from SDADC peripheral to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedMultiModeStart_DMA(SDADC_HandleTypeDef* hsdadc,
                                                       uint32_t* pData, uint32_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(pData != HAL_NULL);
  assert_param(Length != 0);

  /* Check instance is SDADC1 */
  if(hsdadc->Instance != SDADC1)
  {
    status = HAL_ERROR;
  }
  /* Check that DMA is not enabled for regular conversion */
  else if((hsdadc->Instance->CR1 & SDADC_CR1_RDMAEN) == SDADC_CR1_RDMAEN)
  {
    status = HAL_ERROR;
  }
  /* Check parameters compatibility */
  else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
          (Length > (hsdadc->InjectedChannelsNbr << 1)))
  {
    status = HAL_ERROR;
  }
  else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
          (hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
          (hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
          (hsdadc->State == HAL_SDADC_STATE_REG))
  {
    /* Set callbacks on DMA handler */
    hsdadc->hdma->XferCpltCallback = SDADC_DMAInjectedConvCplt;
    hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
    if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
    {
      hsdadc->hdma->XferHalfCpltCallback = SDADC_DMAInjectedHalfConvCplt;
    }
    /* Set JDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 |= SDADC_CR1_JDMAEN;

    /* Start DMA in interrupt mode */
    if(hsdadc->InjectedMultimode == SDADC_MULTIMODE_SDADC1_SDADC2)
    {
      status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->JDATA12R, \
                                (uint32_t) pData, Length);
    }
    else
    {
      status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->JDATA13R, \
                                (uint32_t) pData, Length);
    }
    if(status != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Start injected conversion */
      status = SDADC_InjConvStart(hsdadc);
    }
  }
  else
  {
    status = HAL_ERROR;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to stop multimode injected conversions in DMA mode.
  * @note   This function should be called only if injected conversion is ongoing.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SDADC_InjectedMultiModeStop_DMA(SDADC_HandleTypeDef* hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));

  /* Check instance is SDADC1 */
  if(hsdadc->Instance != SDADC1)
  {
    status = HAL_ERROR;
  }
  /* Check SDADC state */
  else if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
          (hsdadc->State != HAL_SDADC_STATE_REG_INJ))
  {
    /* Return error status */
    status = HAL_ERROR;
  }
  else
  {
    /* Clear JDMAEN bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 &= ~(SDADC_CR1_JDMAEN);

    /* Stop current DMA transfer */
    if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_ERROR;
    }
    else
    {
      /* Stop injected conversion */
      status = SDADC_InjConvStop(hsdadc);
    }
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to get multimode injected conversion value.
  * @param  hsdadc : SDADC handle.
  * @retval Multimode injected conversion value
  */
uint32_t HAL_SDADC_InjectedMultiModeGetValue(SDADC_HandleTypeDef* hsdadc)
{
  uint32_t value = 0;
  
  /* Check parameters and check instance is SDADC1 */
  assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
  assert_param(hsdadc->Instance == SDADC1);

  /* read multimode injected value */
  value = (hsdadc->InjectedMultimode == SDADC_MULTIMODE_SDADC1_SDADC2) ? \
          hsdadc->Instance->JDATA12R : hsdadc->Instance->JDATA13R;

  /* Return multimode injected conversions value */
  return value;
}

/**
  * @brief  This function handles the SDADC interrupts.
  * @param  hsdadc : SDADC handle.
  * @retval None
  */
void HAL_SDADC_IRQHandler(SDADC_HandleTypeDef* hsdadc)
{
  /* Check if end of regular conversion */
  if(((hsdadc->Instance->ISR & SDADC_ISR_REOCF) == SDADC_ISR_REOCF) && \
          ((hsdadc->Instance->CR1 & SDADC_CR1_REOCIE) == SDADC_CR1_REOCIE))
  {
    /* Call regular conversion complete callback */
    HAL_SDADC_ConvCpltCallback(hsdadc);

    /* End of conversion if mode is not continuous and software trigger */
    if((hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
       (hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER))
    {
      /* Clear REOCIE and ROVRIE bits in SDADC_CR1 register */
      hsdadc->Instance->CR1 &= ~(SDADC_CR1_REOCIE | SDADC_CR1_ROVRIE);

      /* Update SDADC state */
      hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_REG) ? \
                      HAL_SDADC_STATE_READY : HAL_SDADC_STATE_INJ;
    }
  }
  /* Check if end of injected conversion */
  else if(((hsdadc->Instance->ISR & SDADC_ISR_JEOCF) == SDADC_ISR_JEOCF) && \
          ((hsdadc->Instance->CR1 & SDADC_CR1_JEOCIE) == SDADC_CR1_JEOCIE))
  {
    /* Call injected conversion complete callback */
    HAL_SDADC_InjectedConvCpltCallback(hsdadc);

    /* Update remaining injected conversions */
    hsdadc->InjConvRemaining--;
    if(hsdadc->InjConvRemaining ==0)
    {
      /* end of injected sequence, reset the value */
      hsdadc->InjConvRemaining = hsdadc->InjectedChannelsNbr;
    }
    /* End of conversion if mode is not continuous, software trigger */
    /* and end of injected sequence */
    if((hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
       (hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
       (hsdadc->InjConvRemaining == hsdadc->InjectedChannelsNbr))
    {
      /* Clear JEOCIE and JOVRIE bits in SDADC_CR1 register */
      hsdadc->Instance->CR1 &= ~(SDADC_CR1_JEOCIE | SDADC_CR1_JOVRIE);

      /* Update SDADC state */
      hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_INJ) ? \
                      HAL_SDADC_STATE_READY : HAL_SDADC_STATE_REG;
    }
  }
  /* Check if end of calibration */
  else if(((hsdadc->Instance->ISR & SDADC_ISR_EOCALF) == SDADC_ISR_EOCALF) && \
          ((hsdadc->Instance->CR1 & SDADC_CR1_EOCALIE) == SDADC_CR1_EOCALIE))
  {
    /* Clear EOCALIE bit in SDADC_CR1 register */
    hsdadc->Instance->CR1 &= ~(SDADC_CR1_EOCALIE);

    /* Set CLREOCALF bit in SDADC_CLRISR register */
    hsdadc->Instance->CLRISR |= SDADC_ISR_CLREOCALF;

    /* Call calibration callback */
    HAL_SDADC_CalibrationCpltCallback(hsdadc);

    /* Update SDADC state */
    hsdadc->State = HAL_SDADC_STATE_READY;
  }
  /* Check if overrun occurs during regular conversion */
  else if(((hsdadc->Instance->ISR & SDADC_ISR_ROVRF) == SDADC_ISR_ROVRF) && \
          ((hsdadc->Instance->CR1 & SDADC_CR1_ROVRIE) == SDADC_CR1_ROVRIE))
  {
    /* Set CLRROVRF bit in SDADC_CLRISR register */
    hsdadc->Instance->CLRISR |= SDADC_ISR_CLRROVRF;

    /* Update error code */
    hsdadc->ErrorCode = SDADC_ERROR_REGULAR_OVERRUN;

    /* Call error callback */
    HAL_SDADC_ErrorCallback(hsdadc);
  }
  /* Check if overrun occurs during injected conversion */
  else if(((hsdadc->Instance->ISR & SDADC_ISR_JOVRF) == SDADC_ISR_JOVRF) && \
          ((hsdadc->Instance->CR1 & SDADC_CR1_JOVRIE) == SDADC_CR1_JOVRIE))
  {
    /* Set CLRJOVRF bit in SDADC_CLRISR register */
    hsdadc->Instance->CLRISR |= SDADC_ISR_CLRJOVRF;

    /* Update error code */
    hsdadc->ErrorCode = SDADC_ERROR_INJECTED_OVERRUN;

    /* Call error callback */
    HAL_SDADC_ErrorCallback(hsdadc);
  }
  return;
}

/**
  * @brief  Calibration complete callback. 
  * @param  hsdadc : SDADC handle.
  * @retval None
  */
__weak void HAL_SDADC_CalibrationCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_CalibrationCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Half regular conversion complete callback. 
  * @param  hsdadc : SDADC handle.
  * @retval None
  */
__weak void HAL_SDADC_ConvHalfCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_ConvHalfCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Regular conversion complete callback. 
  * @note   In interrupt mode, user has to read conversion value in this function
            using HAL_SDADC_GetValue or HAL_SDADC_MultiModeGetValue.
  * @param  hsdadc : SDADC handle.
  * @retval None
  */
__weak void HAL_SDADC_ConvCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_ConvCpltCallback could be implemented in the user file.
   */
}

/**
  * @brief  Half injected conversion complete callback. 
  * @param  hsdadc : SDADC handle.
  * @retval None
  */
__weak void HAL_SDADC_InjectedConvHalfCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_InjectedConvHalfCpltCallback could be implemented in the user file.
   */
}

/**
  * @brief  Injected conversion complete callback. 
  * @note   In interrupt mode, user has to read conversion value in this function
            using HAL_SDADC_InjectedGetValue or HAL_SDADC_InjectedMultiModeGetValue.
  * @param  hsdadc : SDADC handle.
  * @retval None
  */
__weak void HAL_SDADC_InjectedConvCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_InjectedConvCpltCallback could be implemented in the user file.
   */
}

/**
  * @brief  Error callback. 
  * @param  hsdadc : SDADC handle.
  * @retval None
  */
__weak void HAL_SDADC_ErrorCallback(SDADC_HandleTypeDef* hsdadc)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_SDADC_ErrorCallback could be implemented in the user file.
   */
}

/**
  * @brief  DMA half transfer complete callback for regular conversion. 
  * @param  hdma : DMA handle.
  * @retval None
  */
static void SDADC_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get SDADC handle */
  SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call regular half conversion complete callback */
  HAL_SDADC_ConvHalfCpltCallback(hsdadc);
}

/**
  * @brief  DMA transfer complete callback for regular conversion. 
  * @param  hdma : DMA handle.
  * @retval None
  */
static void SDADC_DMARegularConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get SDADC handle */
  SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call regular conversion complete callback */
  HAL_SDADC_ConvCpltCallback(hsdadc);
}

/**
  * @brief  DMA half transfer complete callback for injected conversion. 
  * @param  hdma : DMA handle.
  * @retval None
  */
static void SDADC_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get SDADC handle */
  SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call injected half conversion complete callback */
  HAL_SDADC_InjectedConvHalfCpltCallback(hsdadc);
}

/**
  * @brief  DMA transfer complete callback for injected conversion. 
  * @param  hdma : DMA handle.
  * @retval None
  */
static void SDADC_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Get SDADC handle */
  SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Call injected conversion complete callback */
  HAL_SDADC_InjectedConvCpltCallback(hsdadc);
}

/**
  * @brief  DMA error callback. 
  * @param  hdma : DMA handle.
  * @retval None
  */
static void SDADC_DMAError(DMA_HandleTypeDef *hdma)   
{
  /* Get SDADC handle */
  SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;

  /* Update error code */
  hsdadc->ErrorCode = SDADC_ERROR_DMA;

  /* Call error callback */
  HAL_SDADC_ErrorCallback(hsdadc);
}

/**
  * @}
  */

/** @defgroup SDADC_Exported_Functions_Group4 Peripheral State functions
 *  @brief   SDADC Peripheral State functions 
 *
@verbatim   
  ===============================================================================
             ##### ADC Peripheral State functions #####
  ===============================================================================  
    [..] This subsection provides functions allowing to
      (+) Get the SDADC state
      (+) Get the SDADC Error
         
@endverbatim
  * @{
  */
  
/**
  * @brief  This function allows to get the current SDADC state.
  * @param  hsdadc : SDADC handle.
  * @retval SDADC state.
  */
HAL_SDADC_StateTypeDef HAL_SDADC_GetState(SDADC_HandleTypeDef* hsdadc)
{
  return hsdadc->State;
}

/**
  * @brief  This function allows to get the current SDADC error code.
  * @param  hsdadc : SDADC handle.
  * @retval SDADC error code.
  */
uint32_t HAL_SDADC_GetError(SDADC_HandleTypeDef* hsdadc)
{
  return hsdadc->ErrorCode;
}
    
/**
  * @}
  */

/**
  * @brief  This function allows to enter in init mode for SDADC instance.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status.
  */
static HAL_StatusTypeDef SDADC_EnterInitMode(SDADC_HandleTypeDef* hsdadc)
{
  uint32_t tickstart = 0;
  
  /* Set INIT bit on SDADC_CR1 register */
  hsdadc->Instance->CR1 |= SDADC_CR1_INIT;

  /* Wait INITRDY bit on SDADC_ISR */
  tickstart = HAL_GetTick();
  while((hsdadc->Instance->ISR & SDADC_ISR_INITRDY) == (uint32_t)RESET)
  {
    if((HAL_GetTick()-tickstart) > SDADC_TIMEOUT)
    {       
      return HAL_TIMEOUT;
    } 
  }
  
  /* Return HAL status */
  return HAL_OK;
}

/**
  * @brief  This function allows to exit from init mode for SDADC instance.
  * @param  hsdadc : SDADC handle.
  * @retval None.
  */
static void SDADC_ExitInitMode(SDADC_HandleTypeDef* hsdadc)
{
  /* Reset INIT bit in SDADC_CR1 register */
  hsdadc->Instance->CR1 &= ~(SDADC_CR1_INIT);
}

/**
  * @brief  This function allows to get the number of injected channels.
  * @param  Channels : bitfield of injected channels.
  * @retval Number of injected channels.
  */
static uint32_t SDADC_GetInjChannelsNbr(uint32_t Channels)
{
  uint32_t nbChannels = 0;
  uint32_t tmp,i;
  
  /* Get the number of channels from bitfield */
  tmp = (uint32_t) (Channels & SDADC_LSB_MASK);
  for(i = 0 ; i < 9 ; i++)
  {
    if(tmp & 1)
    {
      nbChannels++;
    }
    tmp = (uint32_t) (tmp >> 1);
  }
  return nbChannels;
}

/**
  * @brief  This function allows to really start regular conversion.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status.
  */
static HAL_StatusTypeDef SDADC_RegConvStart(SDADC_HandleTypeDef* hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check regular trigger */
  if(hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER)
  {
    /* Set RSWSTART bit in SDADC_CR2 register */
    hsdadc->Instance->CR2 |= SDADC_CR2_RSWSTART;
  }
  else /* synchronuous trigger */
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      /* Set RSYNC bit in SDADC_CR1 register */
      hsdadc->Instance->CR1 |= SDADC_CR1_RSYNC;

      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  /* Update SDADC state only if status is OK */
  if(status == HAL_OK)
  {
    hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_READY) ? \
                    HAL_SDADC_STATE_REG : HAL_SDADC_STATE_REG_INJ;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to really stop regular conversion.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status.
  */
static HAL_StatusTypeDef SDADC_RegConvStop(SDADC_HandleTypeDef* hsdadc)
{
  uint32_t tickstart;

  /* Check continuous mode */
  if(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_ON)
  {
    /* Clear REOCF by reading SDADC_RDATAR register */
    hsdadc->Instance->RDATAR;

    /* Clear RCONT bit in SDADC_CR2 register */
    hsdadc->Instance->CR2 &= ~(SDADC_CR2_RCONT);
  }
  /* Wait for the end of regular conversion */
  tickstart = HAL_GetTick();  
  while((hsdadc->Instance->ISR & SDADC_ISR_RCIP) != 0)
  {
    if((HAL_GetTick()-tickstart) > SDADC_TIMEOUT)
    {
      /* Set SDADC in error state and return timeout status */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      return HAL_TIMEOUT;
    }
  }
  /* Check if trigger is synchronuous */
  if(hsdadc->RegularTrigger == SDADC_SYNCHRONOUS_TRIGGER)
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state and return timeout status */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      return HAL_TIMEOUT;
    }
    else
    {
      /* Clear RSYNC bit in SDADC_CR1 register */
      hsdadc->Instance->CR1 &= ~(SDADC_CR1_RSYNC);

      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  /* Check if continuous mode */
  if(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_ON)
  {
    /* Restore RCONT bit in SDADC_CR2 register */
    hsdadc->Instance->CR2 |= SDADC_CR2_RCONT;
  }
  /* Clear REOCF by reading SDADC_RDATAR register */
  hsdadc->Instance->RDATAR;

  /* Set CLRROVRF bit in SDADC_CLRISR register */
  hsdadc->Instance->CLRISR |= SDADC_ISR_CLRROVRF;

  /* Update SDADC state */
  hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_REG) ? \
                  HAL_SDADC_STATE_READY : HAL_SDADC_STATE_INJ;

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  This function allows to really start injected conversion.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status.
  */
static HAL_StatusTypeDef SDADC_InjConvStart(SDADC_HandleTypeDef* hsdadc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Initialize number of injected conversions remaining */
  hsdadc->InjConvRemaining = hsdadc->InjectedChannelsNbr;

  /* Check injected trigger */
  if(hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER)
  {
    /* Set JSWSTART bit in SDADC_CR2 register */
    hsdadc->Instance->CR2 |= SDADC_CR2_JSWSTART;
  }
  else /* external or synchronuous trigger */
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      status = HAL_TIMEOUT;
    }
    else
    {
      if(hsdadc->InjectedTrigger == SDADC_SYNCHRONOUS_TRIGGER)
      {
        /* Set JSYNC bit in SDADC_CR1 register */
        hsdadc->Instance->CR1 |= SDADC_CR1_JSYNC;
      }
      else /* external trigger */
      {
        /* Set JEXTEN[1:0] bits in SDADC_CR2 register */
        hsdadc->Instance->CR2 |= hsdadc->ExtTriggerEdge;
      }
      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  /* Update SDADC state only if status is OK */
  if(status == HAL_OK)
  {
    hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_READY) ? \
                    HAL_SDADC_STATE_INJ : HAL_SDADC_STATE_REG_INJ;
  }
  /* Return function status */
  return status;
}

/**
  * @brief  This function allows to really stop injected conversion.
  * @param  hsdadc : SDADC handle.
  * @retval HAL status.
  */
static HAL_StatusTypeDef SDADC_InjConvStop(SDADC_HandleTypeDef* hsdadc)
{
  uint32_t tickstart;

  /* Check continuous mode */
  if(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_ON)
  {
    /* Clear JEOCF by reading SDADC_JDATAR register */
    hsdadc->Instance->JDATAR;

    /* Clear JCONT bit in SDADC_CR2 register */
    hsdadc->Instance->CR2 &= ~(SDADC_CR2_JCONT);
  }
  /* Wait for the end of injected conversion */
  tickstart = HAL_GetTick();  
  while((hsdadc->Instance->ISR & SDADC_ISR_JCIP) != 0)
  {
    if((HAL_GetTick()-tickstart) > SDADC_TIMEOUT)
    {
      /* Set SDADC in error state and return timeout status */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      return HAL_TIMEOUT;
    }
  }
  /* Check if trigger is not software */
  if(hsdadc->InjectedTrigger != SDADC_SOFTWARE_TRIGGER)
  {
    /* Enter init mode */
    if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
    {
      /* Set SDADC in error state and return timeout status */
      hsdadc->State = HAL_SDADC_STATE_ERROR;
      return HAL_TIMEOUT;
    }
    else
    {
      /* Check if trigger is synchronuous */
      if(hsdadc->InjectedTrigger == SDADC_SYNCHRONOUS_TRIGGER)
      {
        /* Clear JSYNC bit in SDADC_CR1 register */
        hsdadc->Instance->CR1 &= ~(SDADC_CR1_JSYNC);
      }
      else /* external trigger */
      {
        /* Clear JEXTEN[1:0] bits in SDADC_CR2 register */
        hsdadc->Instance->CR2 &= ~(SDADC_CR2_JEXTEN);
      }
      /* Exit init mode */
      SDADC_ExitInitMode(hsdadc);
    }
  }
  /* Check if continuous mode */
  if(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_ON)
  {
    /* Restore JCONT bit in SDADC_CR2 register */
    hsdadc->Instance->CR2 |= SDADC_CR2_JCONT;
  }
  /* Clear JEOCF by reading SDADC_JDATAR register */
  hsdadc->Instance->JDATAR;

  /* Set CLRJOVRF bit in SDADC_CLRISR register */
  hsdadc->Instance->CLRISR |= SDADC_ISR_CLRJOVRF;

  /* Update SDADC state */
  hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_INJ) ? \
                  HAL_SDADC_STATE_READY : HAL_SDADC_STATE_REG;

  /* Return function status */
  return HAL_OK;
}

/**
  * @}
  */

/**
  * @}
  */ 

#endif /* defined(STM32F373xC) || defined(STM32F378xx) */
#endif /* HAL_SDADC_MODULE_ENABLED */
/**
  * @}
  */ 

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/