summaryrefslogtreecommitdiff
path: root/quantum/sequencer/sequencer.c
blob: 2e92f7b3ebfe493ab674996eef195f14377176b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* Copyright 2020 Rodolphe Belouin
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "sequencer.h"

#ifdef MIDI_ENABLE
#    include "process_midi.h"
#endif

#ifdef MIDI_MOCKED
#    include "tests/midi_mock.h"
#endif

sequencer_config_t sequencer_config = {
    false,    // enabled
    {false},  // steps
    {0},      // track notes
    60,       // tempo
    SQ_RES_4, // resolution
};

sequencer_state_t sequencer_internal_state = {0, 0, 0, 0, SEQUENCER_PHASE_ATTACK};

bool is_sequencer_on(void) {
    return sequencer_config.enabled;
}

void sequencer_on(void) {
    dprintln("sequencer on");
    sequencer_config.enabled               = true;
    sequencer_internal_state.current_track = 0;
    sequencer_internal_state.current_step  = 0;
    sequencer_internal_state.timer         = timer_read();
    sequencer_internal_state.phase         = SEQUENCER_PHASE_ATTACK;
}

void sequencer_off(void) {
    dprintln("sequencer off");
    sequencer_config.enabled              = false;
    sequencer_internal_state.current_step = 0;
}

void sequencer_toggle(void) {
    if (is_sequencer_on()) {
        sequencer_off();
    } else {
        sequencer_on();
    }
}

void sequencer_set_track_notes(const uint16_t track_notes[SEQUENCER_TRACKS]) {
    for (uint8_t i = 0; i < SEQUENCER_TRACKS; i++) {
        sequencer_config.track_notes[i] = track_notes[i];
    }
}

bool is_sequencer_track_active(uint8_t track) {
    return (sequencer_internal_state.active_tracks >> track) & true;
}

void sequencer_set_track_activation(uint8_t track, bool value) {
    if (value) {
        sequencer_internal_state.active_tracks |= (1 << track);
    } else {
        sequencer_internal_state.active_tracks &= ~(1 << track);
    }
    dprintf("sequencer: track %d is %s\n", track, value ? "active" : "inactive");
}

void sequencer_toggle_track_activation(uint8_t track) {
    sequencer_set_track_activation(track, !is_sequencer_track_active(track));
}

void sequencer_toggle_single_active_track(uint8_t track) {
    if (is_sequencer_track_active(track)) {
        sequencer_internal_state.active_tracks = 0;
    } else {
        sequencer_internal_state.active_tracks = 1 << track;
    }
}

bool is_sequencer_step_on(uint8_t step) {
    return step < SEQUENCER_STEPS && (sequencer_config.steps[step] & sequencer_internal_state.active_tracks) > 0;
}

bool is_sequencer_step_on_for_track(uint8_t step, uint8_t track) {
    return step < SEQUENCER_STEPS && (sequencer_config.steps[step] >> track) & true;
}

void sequencer_set_step(uint8_t step, bool value) {
    if (step < SEQUENCER_STEPS) {
        if (value) {
            sequencer_config.steps[step] |= sequencer_internal_state.active_tracks;
        } else {
            sequencer_config.steps[step] &= ~sequencer_internal_state.active_tracks;
        }
        dprintf("sequencer: step %d is %s\n", step, value ? "on" : "off");
    } else {
        dprintf("sequencer: step %d is out of range\n", step);
    }
}

void sequencer_toggle_step(uint8_t step) {
    if (is_sequencer_step_on(step)) {
        sequencer_set_step_off(step);
    } else {
        sequencer_set_step_on(step);
    }
}

void sequencer_set_all_steps(bool value) {
    for (uint8_t step = 0; step < SEQUENCER_STEPS; step++) {
        if (value) {
            sequencer_config.steps[step] |= sequencer_internal_state.active_tracks;
        } else {
            sequencer_config.steps[step] &= ~sequencer_internal_state.active_tracks;
        }
    }
    dprintf("sequencer: all steps are %s\n", value ? "on" : "off");
}

uint8_t sequencer_get_tempo(void) {
    return sequencer_config.tempo;
}

void sequencer_set_tempo(uint8_t tempo) {
    if (tempo > 0) {
        sequencer_config.tempo = tempo;
        dprintf("sequencer: tempo set to %d bpm\n", tempo);
    } else {
        dprintln("sequencer: cannot set tempo to 0");
    }
}

void sequencer_increase_tempo(void) {
    // Handling potential uint8_t overflow
    if (sequencer_config.tempo < UINT8_MAX) {
        sequencer_set_tempo(sequencer_config.tempo + 1);
    } else {
        dprintf("sequencer: cannot set tempo above %d\n", UINT8_MAX);
    }
}

void sequencer_decrease_tempo(void) {
    sequencer_set_tempo(sequencer_config.tempo - 1);
}

sequencer_resolution_t sequencer_get_resolution(void) {
    return sequencer_config.resolution;
}

void sequencer_set_resolution(sequencer_resolution_t resolution) {
    if (resolution >= 0 && resolution < SEQUENCER_RESOLUTIONS) {
        sequencer_config.resolution = resolution;
        dprintf("sequencer: resolution set to %d\n", resolution);
    } else {
        dprintf("sequencer: resolution %d is out of range\n", resolution);
    }
}

void sequencer_increase_resolution(void) {
    sequencer_set_resolution(sequencer_config.resolution + 1);
}

void sequencer_decrease_resolution(void) {
    sequencer_set_resolution(sequencer_config.resolution - 1);
}

uint8_t sequencer_get_current_step(void) {
    return sequencer_internal_state.current_step;
}

void sequencer_phase_attack(void) {
    dprintf("sequencer: step %d\n", sequencer_internal_state.current_step);
    dprintf("sequencer: time %d\n", timer_read());

    if (sequencer_internal_state.current_track == 0) {
        sequencer_internal_state.timer = timer_read();
    }

    if (timer_elapsed(sequencer_internal_state.timer) < sequencer_internal_state.current_track * SEQUENCER_TRACK_THROTTLE) {
        return;
    }

#if defined(MIDI_ENABLE) || defined(MIDI_MOCKED)
    if (is_sequencer_step_on_for_track(sequencer_internal_state.current_step, sequencer_internal_state.current_track)) {
        process_midi_basic_noteon(midi_compute_note(sequencer_config.track_notes[sequencer_internal_state.current_track]));
    }
#endif

    if (sequencer_internal_state.current_track < SEQUENCER_TRACKS - 1) {
        sequencer_internal_state.current_track++;
    } else {
        sequencer_internal_state.phase = SEQUENCER_PHASE_RELEASE;
    }
}

void sequencer_phase_release(void) {
    if (timer_elapsed(sequencer_internal_state.timer) < SEQUENCER_PHASE_RELEASE_TIMEOUT + sequencer_internal_state.current_track * SEQUENCER_TRACK_THROTTLE) {
        return;
    }
#if defined(MIDI_ENABLE) || defined(MIDI_MOCKED)
    if (is_sequencer_step_on_for_track(sequencer_internal_state.current_step, sequencer_internal_state.current_track)) {
        process_midi_basic_noteoff(midi_compute_note(sequencer_config.track_notes[sequencer_internal_state.current_track]));
    }
#endif
    if (sequencer_internal_state.current_track > 0) {
        sequencer_internal_state.current_track--;
    } else {
        sequencer_internal_state.phase = SEQUENCER_PHASE_PAUSE;
    }
}

void sequencer_phase_pause(void) {
    if (timer_elapsed(sequencer_internal_state.timer) < sequencer_get_step_duration()) {
        return;
    }

    sequencer_internal_state.current_step = (sequencer_internal_state.current_step + 1) % SEQUENCER_STEPS;
    sequencer_internal_state.phase        = SEQUENCER_PHASE_ATTACK;
}

void sequencer_task(void) {
    if (!sequencer_config.enabled) {
        return;
    }

    if (sequencer_internal_state.phase == SEQUENCER_PHASE_PAUSE) {
        sequencer_phase_pause();
    }

    if (sequencer_internal_state.phase == SEQUENCER_PHASE_RELEASE) {
        sequencer_phase_release();
    }

    if (sequencer_internal_state.phase == SEQUENCER_PHASE_ATTACK) {
        sequencer_phase_attack();
    }
}

uint16_t sequencer_get_beat_duration(void) {
    return get_beat_duration(sequencer_config.tempo);
}

uint16_t sequencer_get_step_duration(void) {
    return get_step_duration(sequencer_config.tempo, sequencer_config.resolution);
}

uint16_t get_beat_duration(uint8_t tempo) {
    // Don’t crash in the unlikely case where the given tempo is 0
    if (tempo == 0) {
        return get_beat_duration(60);
    }

    /**
     * Given
     *  t = tempo and d = duration, both strictly greater than 0
     * When
     *  t beats / minute = 1 beat / d ms
     * Then
     *  t beats / 60000ms = 1 beat / d ms
     *  d ms = 60000ms / t
     */
    return 60000 / tempo;
}

uint16_t get_step_duration(uint8_t tempo, sequencer_resolution_t resolution) {
    /**
     * Resolution cheatsheet:
     * 1/2  => 2 steps per 4 beats
     * 1/2T => 3 steps per 4 beats
     * 1/4  => 4 steps per 4 beats
     * 1/4T => 6 steps per 4 beats
     * 1/8  => 8 steps per 4 beats
     * 1/8T => 12 steps per 4 beats
     * 1/16 => 16 steps per 4 beats
     * 1/16T => 24 steps per 4 beats
     * 1/32 => 32 steps per 4 beats
     *
     * The number of steps for binary resolutions follows the powers of 2.
     * The ternary variants are simply 1.5x faster.
     */
    bool     is_binary            = resolution % 2 == 0;
    uint8_t  binary_steps         = 2 << (resolution / 2);
    uint16_t binary_step_duration = get_beat_duration(tempo) * 4 / binary_steps;

    return is_binary ? binary_step_duration : 2 * binary_step_duration / 3;
}