1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
#if defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_RGB_MATRIX_TYPING_HEATMAP)
RGB_MATRIX_EFFECT(TYPING_HEATMAP)
# ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
# ifndef RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS
# define RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS 25
# endif
void process_rgb_matrix_typing_heatmap(uint8_t row, uint8_t col) {
uint8_t m_row = row - 1;
uint8_t p_row = row + 1;
uint8_t m_col = col - 1;
uint8_t p_col = col + 1;
if (m_col < col) g_rgb_frame_buffer[row][m_col] = qadd8(g_rgb_frame_buffer[row][m_col], 16);
g_rgb_frame_buffer[row][col] = qadd8(g_rgb_frame_buffer[row][col], 32);
if (p_col < MATRIX_COLS) g_rgb_frame_buffer[row][p_col] = qadd8(g_rgb_frame_buffer[row][p_col], 16);
if (p_row < MATRIX_ROWS) {
if (m_col < col) g_rgb_frame_buffer[p_row][m_col] = qadd8(g_rgb_frame_buffer[p_row][m_col], 13);
g_rgb_frame_buffer[p_row][col] = qadd8(g_rgb_frame_buffer[p_row][col], 16);
if (p_col < MATRIX_COLS) g_rgb_frame_buffer[p_row][p_col] = qadd8(g_rgb_frame_buffer[p_row][p_col], 13);
}
if (m_row < row) {
if (m_col < col) g_rgb_frame_buffer[m_row][m_col] = qadd8(g_rgb_frame_buffer[m_row][m_col], 13);
g_rgb_frame_buffer[m_row][col] = qadd8(g_rgb_frame_buffer[m_row][col], 16);
if (p_col < MATRIX_COLS) g_rgb_frame_buffer[m_row][p_col] = qadd8(g_rgb_frame_buffer[m_row][p_col], 13);
}
}
// A timer to track the last time we decremented all heatmap values.
static uint16_t heatmap_decrease_timer;
// Whether we should decrement the heatmap values during the next update.
static bool decrease_heatmap_values;
bool TYPING_HEATMAP(effect_params_t* params) {
// Modified version of RGB_MATRIX_USE_LIMITS to work off of matrix row / col size
uint8_t led_min = RGB_MATRIX_LED_PROCESS_LIMIT * params->iter;
uint8_t led_max = led_min + RGB_MATRIX_LED_PROCESS_LIMIT;
if (led_max > sizeof(g_rgb_frame_buffer)) led_max = sizeof(g_rgb_frame_buffer);
if (params->init) {
rgb_matrix_set_color_all(0, 0, 0);
memset(g_rgb_frame_buffer, 0, sizeof g_rgb_frame_buffer);
}
// The heatmap animation might run in several iterations depending on
// `RGB_MATRIX_LED_PROCESS_LIMIT`, therefore we only want to update the
// timer when the animation starts.
if (params->iter == 0) {
decrease_heatmap_values = timer_elapsed(heatmap_decrease_timer) >= RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS;
// Restart the timer if we are going to decrease the heatmap this frame.
if (decrease_heatmap_values) {
heatmap_decrease_timer = timer_read();
}
}
// Render heatmap & decrease
for (int i = led_min; i < led_max; i++) {
uint8_t row = i % MATRIX_ROWS;
uint8_t col = i / MATRIX_ROWS;
uint8_t val = g_rgb_frame_buffer[row][col];
// set the pixel colour
uint8_t led[LED_HITS_TO_REMEMBER];
uint8_t led_count = rgb_matrix_map_row_column_to_led(row, col, led);
for (uint8_t j = 0; j < led_count; ++j) {
if (!HAS_ANY_FLAGS(g_led_config.flags[led[j]], params->flags)) continue;
HSV hsv = {170 - qsub8(val, 85), rgb_matrix_config.hsv.s, scale8((qadd8(170, val) - 170) * 3, rgb_matrix_config.hsv.v)};
RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
rgb_matrix_set_color(led[j], rgb.r, rgb.g, rgb.b);
}
if (decrease_heatmap_values) {
g_rgb_frame_buffer[row][col] = qsub8(val, 1);
}
}
return led_max < sizeof(g_rgb_frame_buffer);
}
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && !defined(DISABLE_RGB_MATRIX_TYPING_HEATMAP)
|