1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
/* Copyright 2023 Cipulot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ec_switch_matrix.h"
#include "analog.h"
#include "atomic_util.h"
#include "print.h"
#include "wait.h"
/* Pin and port array */
const uint32_t row_pins[] = MATRIX_ROW_PINS;
const uint8_t col_channels[] = MATRIX_COL_CHANNELS;
const uint32_t mux_sel_pins[] = MUX_SEL_PINS;
static ecsm_config_t config;
static uint16_t ecsm_sw_value[MATRIX_ROWS][MATRIX_COLS];
static adc_mux adcMux;
static inline void discharge_capacitor(void) {
writePinLow(DISCHARGE_PIN);
}
static inline void charge_capacitor(uint8_t row) {
writePinHigh(DISCHARGE_PIN);
writePinHigh(row_pins[row]);
}
static inline void init_mux_sel(void) {
for (int idx = 0; idx < 3; idx++) {
setPinOutput(mux_sel_pins[idx]);
}
}
static inline void select_mux(uint8_t col) {
uint8_t ch = col_channels[col];
writePin(mux_sel_pins[0], ch & 1);
writePin(mux_sel_pins[1], ch & 2);
writePin(mux_sel_pins[2], ch & 4);
}
static inline void init_row(void) {
for (int idx = 0; idx < MATRIX_ROWS; idx++) {
setPinOutput(row_pins[idx]);
writePinLow(row_pins[idx]);
}
}
/* Initialize the peripherals pins */
int ecsm_init(ecsm_config_t const* const ecsm_config) {
// Initialize config
config = *ecsm_config;
palSetLineMode(ANALOG_PORT, PAL_MODE_INPUT_ANALOG);
adcMux = pinToMux(ANALOG_PORT);
// Dummy call to make sure that adcStart() has been called in the appropriate state
adc_read(adcMux);
// Initialize discharge pin as discharge mode
writePinLow(DISCHARGE_PIN);
setPinOutputOpenDrain(DISCHARGE_PIN);
// Initialize drive lines
init_row();
// Initialize multiplexer select pin
init_mux_sel();
// Enable AMUX
setPinOutput(APLEX_EN_PIN_0);
writePinLow(APLEX_EN_PIN_0);
setPinOutput(APLEX_EN_PIN_1);
writePinLow(APLEX_EN_PIN_1);
return 0;
}
int ecsm_update(ecsm_config_t const* const ecsm_config) {
// Save config
config = *ecsm_config;
return 0;
}
// Read the capacitive sensor value
uint16_t ecsm_readkey_raw(uint8_t channel, uint8_t row, uint8_t col) {
uint16_t sw_value = 0;
// Select the multiplexer
if (channel == 0) {
writePinHigh(APLEX_EN_PIN_0);
select_mux(col);
writePinLow(APLEX_EN_PIN_0);
} else {
writePinHigh(APLEX_EN_PIN_1);
select_mux(col);
writePinLow(APLEX_EN_PIN_1);
}
// Set strobe pins to low state
writePinLow(row_pins[row]);
ATOMIC_BLOCK_FORCEON {
// Set the row pin to high state and have capacitor charge
charge_capacitor(row);
// Read the ADC value
sw_value = adc_read(adcMux);
}
// Discharge peak hold capacitor
discharge_capacitor();
// Waiting for the ghost capacitor to discharge fully
wait_us(DISCHARGE_TIME);
return sw_value;
}
// Update press/release state of key
bool ecsm_update_key(matrix_row_t* current_row, uint8_t row, uint8_t col, uint16_t sw_value) {
bool current_state = (*current_row >> col) & 1;
// Press to release
if (current_state && sw_value < config.ecsm_actuation_threshold) {
*current_row &= ~(1 << col);
return true;
}
// Release to press
if ((!current_state) && sw_value > config.ecsm_release_threshold) {
*current_row |= (1 << col);
return true;
}
return false;
}
// Scan key values and update matrix state
bool ecsm_matrix_scan(matrix_row_t current_matrix[]) {
bool updated = false;
// Disable AMUX of channel 1
writePinHigh(APLEX_EN_PIN_1);
for (int col = 0; col < sizeof(col_channels); col++) {
for (int row = 0; row < MATRIX_ROWS; row++) {
ecsm_sw_value[row][col] = ecsm_readkey_raw(0, row, col);
updated |= ecsm_update_key(¤t_matrix[row], row, col, ecsm_sw_value[row][col]);
}
}
// Disable AMUX of channel 1
writePinHigh(APLEX_EN_PIN_0);
for (int col = 0; col < (sizeof(col_channels) - 1); col++) {
for (int row = 0; row < MATRIX_ROWS; row++) {
ecsm_sw_value[row][col + 8] = ecsm_readkey_raw(1, row, col);
updated |= ecsm_update_key(¤t_matrix[row], row, col + 8, ecsm_sw_value[row][col + 8]);
}
}
return updated;
}
// Debug print key values
void ecsm_print_matrix(void) {
for (int row = 0; row < MATRIX_ROWS; row++) {
for (int col = 0; col < MATRIX_COLS; col++) {
uprintf("%4d", ecsm_sw_value[row][col]);
if (col < (MATRIX_COLS - 1)) {
print(",");
}
}
print("\n");
}
print("\n");
}
|