summaryrefslogtreecommitdiff
path: root/drivers/sensors/cirque_pinnacle.c
blob: 3131805c20009ce3fa7edfd1d9fc88022c5ef4ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Copyright (c) 2018 Cirque Corp. Restrictions apply. See: www.cirque.com/sw-license
// based on https://github.com/cirque-corp/Cirque_Pinnacle_1CA027/tree/master/Circular_Trackpad
// with modifications and changes for QMK
// refer to documentation: Gen2 and Gen3 (Pinnacle ASIC) at https://www.cirque.com/documentation

#include "cirque_pinnacle.h"
#include "wait.h"
#include "timer.h"

#include <stdlib.h>

#ifndef CIRQUE_PINNACLE_ATTENUATION
#    ifdef CIRQUE_PINNACLE_CURVED_OVERLAY
#        define CIRQUE_PINNACLE_ATTENUATION EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_2X
#    else
#        define CIRQUE_PINNACLE_ATTENUATION EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_4X
#    endif
#endif

bool     touchpad_init;
uint16_t scale_data = CIRQUE_PINNACLE_DEFAULT_SCALE;

void cirque_pinnacle_clear_flags(void);
void cirque_pinnacle_enable_feed(bool feedEnable);
void RAP_ReadBytes(uint8_t address, uint8_t* data, uint8_t count);
void RAP_Write(uint8_t address, uint8_t data);

#if CIRQUE_PINNACLE_POSITION_MODE
/*  Logical Scaling Functions */
// Clips raw coordinates to "reachable" window of sensor
// NOTE: values outside this window can only appear as a result of noise
void ClipCoordinates(pinnacle_data_t* coordinates) {
    if (coordinates->xValue < CIRQUE_PINNACLE_X_LOWER) {
        coordinates->xValue = CIRQUE_PINNACLE_X_LOWER;
    } else if (coordinates->xValue > CIRQUE_PINNACLE_X_UPPER) {
        coordinates->xValue = CIRQUE_PINNACLE_X_UPPER;
    }
    if (coordinates->yValue < CIRQUE_PINNACLE_Y_LOWER) {
        coordinates->yValue = CIRQUE_PINNACLE_Y_LOWER;
    } else if (coordinates->yValue > CIRQUE_PINNACLE_Y_UPPER) {
        coordinates->yValue = CIRQUE_PINNACLE_Y_UPPER;
    }
}
#endif

uint16_t cirque_pinnacle_get_scale(void) {
    return scale_data;
}
void cirque_pinnacle_set_scale(uint16_t scale) {
    scale_data = scale;
}

// Scales data to desired X & Y resolution
void cirque_pinnacle_scale_data(pinnacle_data_t* coordinates, uint16_t xResolution, uint16_t yResolution) {
#if CIRQUE_PINNACLE_POSITION_MODE
    uint32_t xTemp = 0;
    uint32_t yTemp = 0;

    ClipCoordinates(coordinates);

    xTemp = coordinates->xValue;
    yTemp = coordinates->yValue;

    // translate coordinates to (0, 0) reference by subtracting edge-offset
    xTemp -= CIRQUE_PINNACLE_X_LOWER;
    yTemp -= CIRQUE_PINNACLE_Y_LOWER;

    // scale coordinates to (xResolution, yResolution) range
    coordinates->xValue = (uint16_t)(xTemp * xResolution / CIRQUE_PINNACLE_X_RANGE);
    coordinates->yValue = (uint16_t)(yTemp * yResolution / CIRQUE_PINNACLE_Y_RANGE);
#else
    int32_t        xTemp = 0, yTemp = 0;
    ldiv_t         temp;
    static int32_t xRemainder, yRemainder;

    temp       = ldiv(((int32_t)coordinates->xDelta) * (int32_t)xResolution + xRemainder, (int32_t)CIRQUE_PINNACLE_X_RANGE);
    xTemp      = temp.quot;
    xRemainder = temp.rem;

    temp       = ldiv(((int32_t)coordinates->yDelta) * (int32_t)yResolution + yRemainder, (int32_t)CIRQUE_PINNACLE_Y_RANGE);
    yTemp      = temp.quot;
    yRemainder = temp.rem;

    coordinates->xDelta = (int16_t)xTemp;
    coordinates->yDelta = (int16_t)yTemp;
#endif
}

// Clears Status1 register flags (SW_CC and SW_DR)
void cirque_pinnacle_clear_flags(void) {
    RAP_Write(HOSTREG__STATUS1, HOSTREG__STATUS1_DEFVAL & ~(HOSTREG__STATUS1__COMMAND_COMPLETE | HOSTREG__STATUS1__DATA_READY));
    wait_us(50);
}

// Enables/Disables the feed
void cirque_pinnacle_enable_feed(bool feedEnable) {
    uint8_t feedconfig1;
    RAP_ReadBytes(HOSTREG__FEEDCONFIG1, &feedconfig1, 1);

    if (feedEnable) {
        feedconfig1 |= HOSTREG__FEEDCONFIG1__FEED_ENABLE;
    } else {
        feedconfig1 &= ~HOSTREG__FEEDCONFIG1__FEED_ENABLE;
    }
    RAP_Write(HOSTREG__FEEDCONFIG1, feedconfig1);
}

/*  ERA (Extended Register Access) Functions  */
// Reads <count> bytes from an extended register at <address> (16-bit address),
// stores values in <*data>
void ERA_ReadBytes(uint16_t address, uint8_t* data, uint16_t count) {
    uint8_t  ERAControlValue = 0xFF;
    uint16_t timeout_timer;

    cirque_pinnacle_enable_feed(false); // Disable feed

    RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_HIGH, (uint8_t)(address >> 8));    // Send upper byte of ERA address
    RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_LOW, (uint8_t)(address & 0x00FF)); // Send lower byte of ERA address

    for (uint16_t i = 0; i < count; i++) {
        RAP_Write(HOSTREG__EXT_REG_AXS_CTRL, HOSTREG__EREG_AXS__INC_ADDR_READ | HOSTREG__EREG_AXS__READ); // Signal ERA-read (auto-increment) to Pinnacle

        // Wait for status register 0x1E to clear
        timeout_timer = timer_read();
        do {
            RAP_ReadBytes(HOSTREG__EXT_REG_AXS_CTRL, &ERAControlValue, 1);
        } while ((ERAControlValue != 0x00) && (timer_elapsed(timeout_timer) <= CIRQUE_PINNACLE_TIMEOUT));

        RAP_ReadBytes(HOSTREG__EXT_REG_AXS_VALUE, data + i, 1);

        cirque_pinnacle_clear_flags();
    }
}

// Writes a byte, <data>, to an extended register at <address> (16-bit address)
void ERA_WriteByte(uint16_t address, uint8_t data) {
    uint8_t  ERAControlValue = 0xFF;
    uint16_t timeout_timer;

    cirque_pinnacle_enable_feed(false); // Disable feed

    RAP_Write(HOSTREG__EXT_REG_AXS_VALUE, data); // Send data byte to be written

    RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_HIGH, (uint8_t)(address >> 8));    // Upper byte of ERA address
    RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_LOW, (uint8_t)(address & 0x00FF)); // Lower byte of ERA address

    RAP_Write(HOSTREG__EXT_REG_AXS_CTRL, HOSTREG__EREG_AXS__WRITE); // Signal an ERA-write to Pinnacle

    // Wait for status register 0x1E to clear
    timeout_timer = timer_read();
    do {
        RAP_ReadBytes(HOSTREG__EXT_REG_AXS_CTRL, &ERAControlValue, 1);
    } while ((ERAControlValue != 0x00) && (timer_elapsed(timeout_timer) <= CIRQUE_PINNACLE_TIMEOUT));

    cirque_pinnacle_clear_flags();
}

bool cirque_pinnacle_set_adc_attenuation(uint8_t adcGain) {
    uint8_t adcconfig = 0x00;

    ERA_ReadBytes(EXTREG__TRACK_ADCCONFIG, &adcconfig, 1);
    adcGain &= EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK;
    if (adcGain == (adcconfig & EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK)) {
        return false;
    }
    adcconfig &= ~EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK;
    adcconfig |= adcGain;
    ERA_WriteByte(EXTREG__TRACK_ADCCONFIG, adcconfig);
    ERA_ReadBytes(EXTREG__TRACK_ADCCONFIG, &adcconfig, 1);

    return true;
}

// Changes thresholds to improve detection of fingers
// Not needed for flat overlay?
void cirque_pinnacle_tune_edge_sensitivity(void) {
    uint8_t widezmin = 0x00;

    ERA_ReadBytes(EXTREG__XAXIS_WIDEZMIN, &widezmin, 1);
    ERA_WriteByte(EXTREG__XAXIS_WIDEZMIN, 0x04); // magic number from Cirque sample code
    ERA_ReadBytes(EXTREG__XAXIS_WIDEZMIN, &widezmin, 1);

    ERA_ReadBytes(EXTREG__YAXIS_WIDEZMIN, &widezmin, 1);
    ERA_WriteByte(EXTREG__YAXIS_WIDEZMIN, 0x03); // magic number from Cirque sample code
    ERA_ReadBytes(EXTREG__YAXIS_WIDEZMIN, &widezmin, 1);
}

// Perform calibration
void cirque_pinnacle_calibrate(void) {
    uint8_t  calconfig;
    uint16_t timeout_timer;

    RAP_ReadBytes(HOSTREG__CALCONFIG1, &calconfig, 1);
    calconfig |= HOSTREG__CALCONFIG1__CALIBRATE;
    RAP_Write(HOSTREG__CALCONFIG1, calconfig);

    // Calibration takes ~100ms according to GT-AN-090624, doubling the timeout just to be safe
    timeout_timer = timer_read();
    do {
        RAP_ReadBytes(HOSTREG__CALCONFIG1, &calconfig, 1);
    } while ((calconfig & HOSTREG__CALCONFIG1__CALIBRATE) && (timer_elapsed(timeout_timer) <= 200));

    cirque_pinnacle_clear_flags();
}

// Enable/disable cursor smoothing, smoothing is enabled by default
void cirque_pinnacle_cursor_smoothing(bool enable) {
    uint8_t feedconfig3;

    RAP_ReadBytes(HOSTREG__FEEDCONFIG3, &feedconfig3, 1);
    if (enable) {
        feedconfig3 &= ~HOSTREG__FEEDCONFIG3__DISABLE_CROSS_RATE_SMOOTHING;
    } else {
        feedconfig3 |= HOSTREG__FEEDCONFIG3__DISABLE_CROSS_RATE_SMOOTHING;
    }
    RAP_Write(HOSTREG__FEEDCONFIG3, feedconfig3);
}

/*  Pinnacle-based TM040040/TM035035/TM023023 Functions  */
void cirque_pinnacle_init(void) {
#if defined(POINTING_DEVICE_DRIVER_cirque_pinnacle_spi)
    spi_init();
#elif defined(POINTING_DEVICE_DRIVER_cirque_pinnacle_i2c)
    i2c_init();
#endif

    touchpad_init = true;

    // send a RESET command now, in case QMK had a soft-reset without a power cycle
    RAP_Write(HOSTREG__SYSCONFIG1, HOSTREG__SYSCONFIG1__RESET);
    wait_ms(30); // Pinnacle needs 10-15ms to boot, so wait long enough before configuring
    RAP_Write(HOSTREG__SYSCONFIG1, HOSTREG__SYSCONFIG1_DEFVAL);
    wait_us(50);

    // Host clears SW_CC flag
    cirque_pinnacle_clear_flags();

#if CIRQUE_PINNACLE_POSITION_MODE
    RAP_Write(HOSTREG__FEEDCONFIG2, HOSTREG__FEEDCONFIG2_DEFVAL);
#else
    // FeedConfig2 (Feature flags for Relative Mode Only)
    uint8_t feedconfig2 = HOSTREG__FEEDCONFIG2__GLIDE_EXTEND_DISABLE | HOSTREG__FEEDCONFIG2__INTELLIMOUSE_MODE;
#    if !defined(CIRQUE_PINNACLE_TAP_ENABLE)
    feedconfig2 |= HOSTREG__FEEDCONFIG2__ALL_TAP_DISABLE;
#    endif
#    if !defined(CIRQUE_PINNACLE_SECONDARY_TAP_ENABLE)
    feedconfig2 |= HOSTREG__FEEDCONFIG2__SECONDARY_TAP_DISABLE;
#    elif !defined(CIRQUE_PINNACLE_TAP_ENABLE)
#        error CIRQUE_PINNACLE_TAP_ENABLE must be defined for CIRQUE_PINNACLE_SECONDARY_TAP_ENABLE to work
#    endif
#    if !defined(CIRQUE_PINNACLE_SIDE_SCROLL_ENABLE)
    feedconfig2 |= HOSTREG__FEEDCONFIG2__SCROLL_DISABLE;
#    endif
    RAP_Write(HOSTREG__FEEDCONFIG2, feedconfig2);
#endif

    // FeedConfig1 (Data Output Flags)
    RAP_Write(HOSTREG__FEEDCONFIG1, CIRQUE_PINNACLE_POSITION_MODE ? HOSTREG__FEEDCONFIG1__DATA_TYPE__REL0_ABS1 : HOSTREG__FEEDCONFIG1_DEFVAL);

#if CIRQUE_PINNACLE_POSITION_MODE
    // Host sets z-idle packet count to 5 (default is 0x1E/30)
    RAP_Write(HOSTREG__ZIDLE, 5);
#endif

    bool calibrate = cirque_pinnacle_set_adc_attenuation(CIRQUE_PINNACLE_ATTENUATION);

#ifdef CIRQUE_PINNACLE_CURVED_OVERLAY
    cirque_pinnacle_tune_edge_sensitivity();
    calibrate = true;
#endif
    if (calibrate) {
        // Force a calibration after setting ADC attenuation
        cirque_pinnacle_calibrate();
    }

    cirque_pinnacle_enable_feed(true);
}

pinnacle_data_t cirque_pinnacle_read_data(void) {
    uint8_t         data_ready = 0;
    uint8_t         data[6]    = {0};
    pinnacle_data_t result     = {0};

    // Check if there is valid data available
    RAP_ReadBytes(HOSTREG__STATUS1, &data_ready, 1);
    if ((data_ready & HOSTREG__STATUS1__DATA_READY) == 0) {
        // no data available yet
        result.valid = false; // be explicit
        return result;
    }

    // Read all data bytes
    RAP_ReadBytes(HOSTREG__PACKETBYTE_0, data, 6);

    // Get ready for the next data sample
    cirque_pinnacle_clear_flags();

#if CIRQUE_PINNACLE_POSITION_MODE
    // Decode data for absolute mode
    // Register 0x13 is unused in this mode (palm detection area)
    result.buttonFlags = data[0] & 0x3F;                             // bit0 to bit5 are switch 0-5, only hardware button presses (from input pin on the Pinnacle chip)
    result.xValue      = data[2] | ((data[4] & 0x0F) << 8);          // merge high and low bits for X
    result.yValue      = data[3] | ((data[4] & 0xF0) << 4);          // merge high and low bits for Y
    result.zValue      = data[5] & 0x3F;                             // Z is only lower 6 bits, upper 2 bits are reserved/unused
    result.touchDown   = (result.xValue != 0 || result.yValue != 0); // (0,0) is a "magic coordinate" to indicate "finger touched down"
#else
    // Decode data for relative mode
    // Registers 0x16 and 0x17 are unused in this mode
    result.buttons = data[0] & 0x07; // Only three buttons are supported
    if ((data[0] & 0x10) && data[1] != 0) {
        result.xDelta = -((int16_t)256 - (int16_t)(data[1]));
    } else {
        result.xDelta = data[1];
    }
    if ((data[0] & 0x20) && data[2] != 0) {
        result.yDelta = ((int16_t)256 - (int16_t)(data[2]));
    } else {
        result.yDelta = -((int16_t)data[2]);
    }
    result.wheelCount = ((int8_t*)data)[3];
#endif

    result.valid = true;
    return result;
}