summaryrefslogtreecommitdiff
path: root/quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp')
-rw-r--r--quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp295
1 files changed, 295 insertions, 0 deletions
diff --git a/quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp b/quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp
new file mode 100644
index 0000000000..0b03113c89
--- /dev/null
+++ b/quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp
@@ -0,0 +1,295 @@
+// Copyright 2022 Nick Brassel (@tzarc)
+// SPDX-License-Identifier: GPL-2.0-or-later
+#include <numeric>
+#include "gtest/gtest.h"
+#include "gmock/gmock.h"
+#include "backing_mocks.hpp"
+
+class WearLeveling2ByteOptimizedWrites : public ::testing::Test {
+ protected:
+ void SetUp() override {
+ MockBackingStore::Instance().reset_instance();
+ wear_leveling_init();
+ }
+};
+
+static std::array<std::uint8_t, WEAR_LEVELING_LOGICAL_SIZE> verify_data;
+
+static wear_leveling_status_t test_write(const uint32_t address, const void* value, size_t length) {
+ memcpy(&verify_data[address], value, length);
+ return wear_leveling_write(address, value, length);
+}
+
+/**
+ * This test ensures the correct number of backing store writes occurs with a multibyte write, given the input buffer size.
+ */
+TEST_F(WearLeveling2ByteOptimizedWrites, MultibyteBackingStoreWriteCounts) {
+ auto& inst = MockBackingStore::Instance();
+
+ for (std::size_t length = 1; length <= 5; ++length) {
+ // Clear things out
+ std::fill(verify_data.begin(), verify_data.end(), 0);
+ inst.reset_instance();
+ wear_leveling_init();
+
+ // Generate a test block of data
+ std::vector<std::uint8_t> testvalue(length);
+ std::iota(testvalue.begin(), testvalue.end(), 0x20);
+
+ // Write the data
+ EXPECT_EQ(test_write(2000, testvalue.data(), testvalue.size()), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status";
+
+ std::size_t expected;
+ if (length > 3) {
+ expected = 4;
+ } else if (length > 1) {
+ expected = 3;
+ } else {
+ expected = 2;
+ }
+
+ // Check that we got the expected number of write log entries
+ EXPECT_EQ(std::distance(inst.log_begin(), inst.log_end()), expected);
+ }
+}
+
+/**
+ * This test runs through writing U16 values of `0` or `1` over the entire logical address range, to even addresses only.
+ * - Addresses <16384 will result in a single optimised backing write
+ * - Higher addresses will result in a multibyte write of 3 backing writes
+ */
+TEST_F(WearLeveling2ByteOptimizedWrites, WriteOneThenZeroToEvenAddresses) {
+ auto& inst = MockBackingStore::Instance();
+
+ // Only attempt writes for each address up to a limit that would NOT force a consolidated data write.
+ std::size_t writes_per_loop = (MOCK_WRITE_LOG_MAX_ENTRIES::value / 6) - 1; // Worst case is 6 writes for each pair of writes of 0/1
+ std::size_t final_address;
+ for (uint32_t address = 0; address < WEAR_LEVELING_LOGICAL_SIZE; address += (writes_per_loop * 2)) {
+ // Clear things out
+ std::fill(verify_data.begin(), verify_data.end(), 0);
+ inst.reset_instance();
+ wear_leveling_init();
+
+ // Loop through all the addresses in this range
+ std::size_t expected = 0;
+ for (uint32_t offset = 0; offset < (writes_per_loop * 2); offset += 2) {
+ // If we're about to exceed the limit of the logical store, skip the writes
+ if (address + offset + 2 > WEAR_LEVELING_LOGICAL_SIZE) {
+ break;
+ }
+
+ // The default erased value of the wear-leveling cache is zero, so we write a one first, then a zero, to ensure a backing store write occurs.
+ uint16_t val = 1;
+ EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status";
+ val = 0;
+ EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status";
+
+ std::size_t backing_store_writes_expected = 0;
+ if (address + offset < 16384) {
+ // A U16 value of 0/1 at an even address <16384 will result in 1 backing write each, so we need 2 backing writes for 2 logical writes
+ backing_store_writes_expected = 2;
+ } else {
+ // All other addresses result in a multibyte write (3 backing store writes) to write two local bytes of data
+ backing_store_writes_expected = 6;
+ }
+
+ // Keep track of the total number of expected writes to the backing store
+ expected += backing_store_writes_expected;
+
+ // Verify we're at the correct number of writes
+ EXPECT_EQ(std::distance(inst.log_begin(), inst.log_end()), expected) << "Write log doesn't match required number of backing store writes for address " << (address + offset);
+
+ // Verify that the write log entries we expect are actually present
+ std::size_t write_index = expected - backing_store_writes_expected;
+ auto write_iter = inst.log_begin() + write_index;
+ write_log_entry_t e;
+ if (address + offset < 16384) {
+ // A U16 value of 0/1 at an even address <16384 will result in 1 backing write each, so we need 2 backing writes for 2 logical writes
+ for (std::size_t i = 0; i < 2; ++i) {
+ e.raw16[0] = write_iter->value;
+ EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_WORD_01) << "Invalid write log entry type at " << (address + offset);
+ ++write_iter;
+ }
+ } else {
+ // Multibyte write
+ e.raw16[0] = write_iter->value;
+ EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_MULTIBYTE) << "Invalid write log entry type at " << (address + offset);
+ EXPECT_EQ(LOG_ENTRY_MULTIBYTE_GET_LENGTH(e), 2) << "Invalid write log entry length at " << (address + offset);
+ ++write_iter;
+ }
+
+ // Keep track of the final address written, so we can verify the entire logical range was handled
+ final_address = address + offset;
+ }
+
+ // Verify the number of writes that occurred to the backing store
+ size_t backing_write_count = std::distance(inst.log_begin(), inst.log_end());
+ EXPECT_EQ(backing_write_count, expected) << "Invalid write count at address " << address;
+
+ // Verify the data is what we expected
+ std::array<std::uint8_t, WEAR_LEVELING_LOGICAL_SIZE> readback;
+ EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data";
+ EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match";
+
+ // Re-init and re-read, testing the reload capability
+ EXPECT_NE(wear_leveling_init(), WEAR_LEVELING_FAILED) << "Re-initialisation failed";
+ EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data";
+ EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match";
+ }
+
+ // Verify the full range of the logical area got written
+ EXPECT_EQ(final_address, WEAR_LEVELING_LOGICAL_SIZE - 2) << "Invalid final write address";
+}
+
+/**
+ * This test runs through writing U16 values of `0` or `1` over the entire logical address range, to odd addresses only.
+ * - Addresses <63 will result in 2 optimised backing writes
+ * - Address 63 results in a single optimised backing write for the first logical byte, and a multibyte write of 2 backing writes for the second logical byte
+ * - Higher addresses will result in a multibyte write of 3 backing writes
+ */
+TEST_F(WearLeveling2ByteOptimizedWrites, WriteOneThenZeroToOddAddresses) {
+ auto& inst = MockBackingStore::Instance();
+
+ // Only attempt writes for each address up to a limit that would NOT force a consolidated data write.
+ std::size_t writes_per_loop = (MOCK_WRITE_LOG_MAX_ENTRIES::value / 6) - 1; // Worst case is 6 writes for each pair of writes of 0/1
+ std::size_t final_address;
+ for (uint32_t address = 1; address < WEAR_LEVELING_LOGICAL_SIZE; address += (writes_per_loop * 2)) {
+ // Clear things out
+ std::fill(verify_data.begin(), verify_data.end(), 0);
+ inst.reset_instance();
+ wear_leveling_init();
+
+ // Loop through all the addresses in this range
+ std::size_t expected = 0;
+ for (uint32_t offset = 0; offset < (writes_per_loop * 2); offset += 2) {
+ // If we're about to exceed the limit of the logical store, skip the writes
+ if (address + offset + 2 > WEAR_LEVELING_LOGICAL_SIZE) {
+ break;
+ }
+
+ // The default erased value of the wear-leveling cache is zero, so we write a one first, then a zero, to ensure a backing store write occurs.
+ uint16_t val = 1;
+ EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status";
+ val = 0;
+ EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status";
+
+ std::size_t backing_store_writes_expected = 0;
+ if (address + offset < 63) {
+ // A U16 value of 0/1 at an odd address <64 will result in 2 backing writes each, so we need 4 backing writes for 2 logical writes
+ backing_store_writes_expected = 4;
+ } else if (address + offset == 63) {
+ // If we're straddling the boundary for optimised bytes (addr==64), then the first logical byte is written using the optimised write (1 backing
+ // store write), and the second logical byte uses a multibyte write (2 backing store writes)
+ backing_store_writes_expected = 2 // First logical bytes written using optimised log entries
+ + 4; // Second logical bytes written using multibyte log entries
+ } else {
+ // All other addresses result in a multibyte write (3 backing store writes) to write two local bytes of data
+ backing_store_writes_expected = 6;
+ }
+
+ // Keep track of the total number of expected writes to the backing store
+ expected += backing_store_writes_expected;
+
+ // Verify we're at the correct number of writes
+ EXPECT_EQ(std::distance(inst.log_begin(), inst.log_end()), expected) << "Write log doesn't match required number of backing store writes for address " << (address + offset);
+
+ // Verify that the write log entries we expect are actually present
+ std::size_t write_index = expected - backing_store_writes_expected;
+ auto write_iter = inst.log_begin() + write_index;
+ write_log_entry_t e;
+ if (address + offset < 63) {
+ // A U16 value of 0/1 at an odd address <64 will result in 2 backing writes each, so we need 4 backing writes for 2 logical writes
+ for (std::size_t i = 0; i < 4; ++i) {
+ e.raw16[0] = write_iter->value;
+ EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_OPTIMIZED_64) << "Invalid write log entry type";
+ ++write_iter;
+ }
+ } else if (address + offset == 63) {
+ // First log entry is the 64-addr optimised one
+ e.raw16[0] = write_iter->value;
+ EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_OPTIMIZED_64) << "Invalid write log entry type";
+ ++write_iter;
+
+ // Second log entry is the multibyte entry for the second logical byte
+ e.raw16[0] = write_iter->value;
+ EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_MULTIBYTE) << "Invalid write log entry type";
+ EXPECT_EQ(LOG_ENTRY_MULTIBYTE_GET_LENGTH(e), 1) << "Invalid write log entry length";
+ ++write_iter;
+ } else {
+ // Multibyte write
+ e.raw16[0] = write_iter->value;
+ EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_MULTIBYTE) << "Invalid write log entry type";
+ EXPECT_EQ(LOG_ENTRY_MULTIBYTE_GET_LENGTH(e), 2) << "Invalid write log entry length";
+ ++write_iter;
+ }
+
+ // Keep track of the final address written, so we can verify the entire logical range was handled
+ final_address = address + offset;
+ }
+
+ // Verify the number of writes that occurred to the backing store
+ size_t backing_write_count = std::distance(inst.log_begin(), inst.log_end());
+ EXPECT_EQ(backing_write_count, expected) << "Invalid write count at address " << address;
+
+ // Verify the data is what we expected
+ std::array<std::uint8_t, WEAR_LEVELING_LOGICAL_SIZE> readback;
+ EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data";
+ EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match";
+
+ // Re-init and re-read, testing the reload capability
+ EXPECT_NE(wear_leveling_init(), WEAR_LEVELING_FAILED) << "Re-initialisation failed";
+ EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data";
+ EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match";
+ }
+
+ // Verify the full range of the logical area got written
+ EXPECT_EQ(final_address, WEAR_LEVELING_LOGICAL_SIZE - 3) << "Invalid final write address";
+}
+
+/**
+ * This test verifies readback after playback of the write log, simulating power loss and reboot.
+ */
+TEST_F(WearLeveling2ByteOptimizedWrites, PlaybackReadbackOptimized64_Success) {
+ auto& inst = MockBackingStore::Instance();
+ auto logstart = inst.storage_begin() + (WEAR_LEVELING_LOGICAL_SIZE / sizeof(backing_store_int_t));
+
+ // Invalid FNV1a_64 hash
+ (logstart + 0)->set(0);
+ (logstart + 1)->set(0);
+ (logstart + 2)->set(0);
+ (logstart + 3)->set(0);
+
+ // Set up a 1-byte logical write of 0x11 at logical offset 0x01
+ auto entry0 = LOG_ENTRY_MAKE_OPTIMIZED_64(0x01, 0x11);
+ (logstart + 4)->set(~entry0.raw16[0]); // start at offset 4 to skip FNV1a_64 result
+
+ wear_leveling_init();
+ uint8_t tmp;
+
+ wear_leveling_read(0x01, &tmp, sizeof(tmp));
+ EXPECT_EQ(tmp, 0x11) << "Failed to read back the seeded data";
+}
+
+/**
+ * This test verifies readback after playback of the write log, simulating power loss and reboot.
+ */
+TEST_F(WearLeveling2ByteOptimizedWrites, PlaybackReadbackWord01_Success) {
+ auto& inst = MockBackingStore::Instance();
+ auto logstart = inst.storage_begin() + (WEAR_LEVELING_LOGICAL_SIZE / sizeof(backing_store_int_t));
+
+ // Invalid FNV1a_64 hash
+ (logstart + 0)->set(0);
+ (logstart + 1)->set(0);
+ (logstart + 2)->set(0);
+ (logstart + 3)->set(0);
+
+ // Set up a 1-byte logical write of 1 at logical offset 0x02
+ auto entry0 = LOG_ENTRY_MAKE_WORD_01(0x02, 1);
+ (logstart + 4)->set(~entry0.raw16[0]); // start at offset 4 to skip FNV1a_64 result
+
+ wear_leveling_init();
+ uint8_t tmp;
+
+ wear_leveling_read(0x02, &tmp, sizeof(tmp));
+ EXPECT_EQ(tmp, 1) << "Failed to read back the seeded data";
+}