diff options
Diffstat (limited to 'quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp')
-rw-r--r-- | quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp | 295 |
1 files changed, 295 insertions, 0 deletions
diff --git a/quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp b/quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp new file mode 100644 index 0000000000..0b03113c89 --- /dev/null +++ b/quantum/wear_leveling/tests/wear_leveling_2byte_optimized_writes.cpp @@ -0,0 +1,295 @@ +// Copyright 2022 Nick Brassel (@tzarc) +// SPDX-License-Identifier: GPL-2.0-or-later +#include <numeric> +#include "gtest/gtest.h" +#include "gmock/gmock.h" +#include "backing_mocks.hpp" + +class WearLeveling2ByteOptimizedWrites : public ::testing::Test { + protected: + void SetUp() override { + MockBackingStore::Instance().reset_instance(); + wear_leveling_init(); + } +}; + +static std::array<std::uint8_t, WEAR_LEVELING_LOGICAL_SIZE> verify_data; + +static wear_leveling_status_t test_write(const uint32_t address, const void* value, size_t length) { + memcpy(&verify_data[address], value, length); + return wear_leveling_write(address, value, length); +} + +/** + * This test ensures the correct number of backing store writes occurs with a multibyte write, given the input buffer size. + */ +TEST_F(WearLeveling2ByteOptimizedWrites, MultibyteBackingStoreWriteCounts) { + auto& inst = MockBackingStore::Instance(); + + for (std::size_t length = 1; length <= 5; ++length) { + // Clear things out + std::fill(verify_data.begin(), verify_data.end(), 0); + inst.reset_instance(); + wear_leveling_init(); + + // Generate a test block of data + std::vector<std::uint8_t> testvalue(length); + std::iota(testvalue.begin(), testvalue.end(), 0x20); + + // Write the data + EXPECT_EQ(test_write(2000, testvalue.data(), testvalue.size()), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status"; + + std::size_t expected; + if (length > 3) { + expected = 4; + } else if (length > 1) { + expected = 3; + } else { + expected = 2; + } + + // Check that we got the expected number of write log entries + EXPECT_EQ(std::distance(inst.log_begin(), inst.log_end()), expected); + } +} + +/** + * This test runs through writing U16 values of `0` or `1` over the entire logical address range, to even addresses only. + * - Addresses <16384 will result in a single optimised backing write + * - Higher addresses will result in a multibyte write of 3 backing writes + */ +TEST_F(WearLeveling2ByteOptimizedWrites, WriteOneThenZeroToEvenAddresses) { + auto& inst = MockBackingStore::Instance(); + + // Only attempt writes for each address up to a limit that would NOT force a consolidated data write. + std::size_t writes_per_loop = (MOCK_WRITE_LOG_MAX_ENTRIES::value / 6) - 1; // Worst case is 6 writes for each pair of writes of 0/1 + std::size_t final_address; + for (uint32_t address = 0; address < WEAR_LEVELING_LOGICAL_SIZE; address += (writes_per_loop * 2)) { + // Clear things out + std::fill(verify_data.begin(), verify_data.end(), 0); + inst.reset_instance(); + wear_leveling_init(); + + // Loop through all the addresses in this range + std::size_t expected = 0; + for (uint32_t offset = 0; offset < (writes_per_loop * 2); offset += 2) { + // If we're about to exceed the limit of the logical store, skip the writes + if (address + offset + 2 > WEAR_LEVELING_LOGICAL_SIZE) { + break; + } + + // The default erased value of the wear-leveling cache is zero, so we write a one first, then a zero, to ensure a backing store write occurs. + uint16_t val = 1; + EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status"; + val = 0; + EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status"; + + std::size_t backing_store_writes_expected = 0; + if (address + offset < 16384) { + // A U16 value of 0/1 at an even address <16384 will result in 1 backing write each, so we need 2 backing writes for 2 logical writes + backing_store_writes_expected = 2; + } else { + // All other addresses result in a multibyte write (3 backing store writes) to write two local bytes of data + backing_store_writes_expected = 6; + } + + // Keep track of the total number of expected writes to the backing store + expected += backing_store_writes_expected; + + // Verify we're at the correct number of writes + EXPECT_EQ(std::distance(inst.log_begin(), inst.log_end()), expected) << "Write log doesn't match required number of backing store writes for address " << (address + offset); + + // Verify that the write log entries we expect are actually present + std::size_t write_index = expected - backing_store_writes_expected; + auto write_iter = inst.log_begin() + write_index; + write_log_entry_t e; + if (address + offset < 16384) { + // A U16 value of 0/1 at an even address <16384 will result in 1 backing write each, so we need 2 backing writes for 2 logical writes + for (std::size_t i = 0; i < 2; ++i) { + e.raw16[0] = write_iter->value; + EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_WORD_01) << "Invalid write log entry type at " << (address + offset); + ++write_iter; + } + } else { + // Multibyte write + e.raw16[0] = write_iter->value; + EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_MULTIBYTE) << "Invalid write log entry type at " << (address + offset); + EXPECT_EQ(LOG_ENTRY_MULTIBYTE_GET_LENGTH(e), 2) << "Invalid write log entry length at " << (address + offset); + ++write_iter; + } + + // Keep track of the final address written, so we can verify the entire logical range was handled + final_address = address + offset; + } + + // Verify the number of writes that occurred to the backing store + size_t backing_write_count = std::distance(inst.log_begin(), inst.log_end()); + EXPECT_EQ(backing_write_count, expected) << "Invalid write count at address " << address; + + // Verify the data is what we expected + std::array<std::uint8_t, WEAR_LEVELING_LOGICAL_SIZE> readback; + EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data"; + EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match"; + + // Re-init and re-read, testing the reload capability + EXPECT_NE(wear_leveling_init(), WEAR_LEVELING_FAILED) << "Re-initialisation failed"; + EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data"; + EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match"; + } + + // Verify the full range of the logical area got written + EXPECT_EQ(final_address, WEAR_LEVELING_LOGICAL_SIZE - 2) << "Invalid final write address"; +} + +/** + * This test runs through writing U16 values of `0` or `1` over the entire logical address range, to odd addresses only. + * - Addresses <63 will result in 2 optimised backing writes + * - Address 63 results in a single optimised backing write for the first logical byte, and a multibyte write of 2 backing writes for the second logical byte + * - Higher addresses will result in a multibyte write of 3 backing writes + */ +TEST_F(WearLeveling2ByteOptimizedWrites, WriteOneThenZeroToOddAddresses) { + auto& inst = MockBackingStore::Instance(); + + // Only attempt writes for each address up to a limit that would NOT force a consolidated data write. + std::size_t writes_per_loop = (MOCK_WRITE_LOG_MAX_ENTRIES::value / 6) - 1; // Worst case is 6 writes for each pair of writes of 0/1 + std::size_t final_address; + for (uint32_t address = 1; address < WEAR_LEVELING_LOGICAL_SIZE; address += (writes_per_loop * 2)) { + // Clear things out + std::fill(verify_data.begin(), verify_data.end(), 0); + inst.reset_instance(); + wear_leveling_init(); + + // Loop through all the addresses in this range + std::size_t expected = 0; + for (uint32_t offset = 0; offset < (writes_per_loop * 2); offset += 2) { + // If we're about to exceed the limit of the logical store, skip the writes + if (address + offset + 2 > WEAR_LEVELING_LOGICAL_SIZE) { + break; + } + + // The default erased value of the wear-leveling cache is zero, so we write a one first, then a zero, to ensure a backing store write occurs. + uint16_t val = 1; + EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status"; + val = 0; + EXPECT_EQ(test_write(address + offset, &val, sizeof(val)), WEAR_LEVELING_SUCCESS) << "Write failed with incorrect status"; + + std::size_t backing_store_writes_expected = 0; + if (address + offset < 63) { + // A U16 value of 0/1 at an odd address <64 will result in 2 backing writes each, so we need 4 backing writes for 2 logical writes + backing_store_writes_expected = 4; + } else if (address + offset == 63) { + // If we're straddling the boundary for optimised bytes (addr==64), then the first logical byte is written using the optimised write (1 backing + // store write), and the second logical byte uses a multibyte write (2 backing store writes) + backing_store_writes_expected = 2 // First logical bytes written using optimised log entries + + 4; // Second logical bytes written using multibyte log entries + } else { + // All other addresses result in a multibyte write (3 backing store writes) to write two local bytes of data + backing_store_writes_expected = 6; + } + + // Keep track of the total number of expected writes to the backing store + expected += backing_store_writes_expected; + + // Verify we're at the correct number of writes + EXPECT_EQ(std::distance(inst.log_begin(), inst.log_end()), expected) << "Write log doesn't match required number of backing store writes for address " << (address + offset); + + // Verify that the write log entries we expect are actually present + std::size_t write_index = expected - backing_store_writes_expected; + auto write_iter = inst.log_begin() + write_index; + write_log_entry_t e; + if (address + offset < 63) { + // A U16 value of 0/1 at an odd address <64 will result in 2 backing writes each, so we need 4 backing writes for 2 logical writes + for (std::size_t i = 0; i < 4; ++i) { + e.raw16[0] = write_iter->value; + EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_OPTIMIZED_64) << "Invalid write log entry type"; + ++write_iter; + } + } else if (address + offset == 63) { + // First log entry is the 64-addr optimised one + e.raw16[0] = write_iter->value; + EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_OPTIMIZED_64) << "Invalid write log entry type"; + ++write_iter; + + // Second log entry is the multibyte entry for the second logical byte + e.raw16[0] = write_iter->value; + EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_MULTIBYTE) << "Invalid write log entry type"; + EXPECT_EQ(LOG_ENTRY_MULTIBYTE_GET_LENGTH(e), 1) << "Invalid write log entry length"; + ++write_iter; + } else { + // Multibyte write + e.raw16[0] = write_iter->value; + EXPECT_EQ(LOG_ENTRY_GET_TYPE(e), LOG_ENTRY_TYPE_MULTIBYTE) << "Invalid write log entry type"; + EXPECT_EQ(LOG_ENTRY_MULTIBYTE_GET_LENGTH(e), 2) << "Invalid write log entry length"; + ++write_iter; + } + + // Keep track of the final address written, so we can verify the entire logical range was handled + final_address = address + offset; + } + + // Verify the number of writes that occurred to the backing store + size_t backing_write_count = std::distance(inst.log_begin(), inst.log_end()); + EXPECT_EQ(backing_write_count, expected) << "Invalid write count at address " << address; + + // Verify the data is what we expected + std::array<std::uint8_t, WEAR_LEVELING_LOGICAL_SIZE> readback; + EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data"; + EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match"; + + // Re-init and re-read, testing the reload capability + EXPECT_NE(wear_leveling_init(), WEAR_LEVELING_FAILED) << "Re-initialisation failed"; + EXPECT_EQ(wear_leveling_read(0, readback.data(), WEAR_LEVELING_LOGICAL_SIZE), WEAR_LEVELING_SUCCESS) << "Failed to read back the saved data"; + EXPECT_TRUE(memcmp(readback.data(), verify_data.data(), WEAR_LEVELING_LOGICAL_SIZE) == 0) << "Readback for address " << address << " did not match"; + } + + // Verify the full range of the logical area got written + EXPECT_EQ(final_address, WEAR_LEVELING_LOGICAL_SIZE - 3) << "Invalid final write address"; +} + +/** + * This test verifies readback after playback of the write log, simulating power loss and reboot. + */ +TEST_F(WearLeveling2ByteOptimizedWrites, PlaybackReadbackOptimized64_Success) { + auto& inst = MockBackingStore::Instance(); + auto logstart = inst.storage_begin() + (WEAR_LEVELING_LOGICAL_SIZE / sizeof(backing_store_int_t)); + + // Invalid FNV1a_64 hash + (logstart + 0)->set(0); + (logstart + 1)->set(0); + (logstart + 2)->set(0); + (logstart + 3)->set(0); + + // Set up a 1-byte logical write of 0x11 at logical offset 0x01 + auto entry0 = LOG_ENTRY_MAKE_OPTIMIZED_64(0x01, 0x11); + (logstart + 4)->set(~entry0.raw16[0]); // start at offset 4 to skip FNV1a_64 result + + wear_leveling_init(); + uint8_t tmp; + + wear_leveling_read(0x01, &tmp, sizeof(tmp)); + EXPECT_EQ(tmp, 0x11) << "Failed to read back the seeded data"; +} + +/** + * This test verifies readback after playback of the write log, simulating power loss and reboot. + */ +TEST_F(WearLeveling2ByteOptimizedWrites, PlaybackReadbackWord01_Success) { + auto& inst = MockBackingStore::Instance(); + auto logstart = inst.storage_begin() + (WEAR_LEVELING_LOGICAL_SIZE / sizeof(backing_store_int_t)); + + // Invalid FNV1a_64 hash + (logstart + 0)->set(0); + (logstart + 1)->set(0); + (logstart + 2)->set(0); + (logstart + 3)->set(0); + + // Set up a 1-byte logical write of 1 at logical offset 0x02 + auto entry0 = LOG_ENTRY_MAKE_WORD_01(0x02, 1); + (logstart + 4)->set(~entry0.raw16[0]); // start at offset 4 to skip FNV1a_64 result + + wear_leveling_init(); + uint8_t tmp; + + wear_leveling_read(0x02, &tmp, sizeof(tmp)); + EXPECT_EQ(tmp, 1) << "Failed to read back the seeded data"; +} |