summaryrefslogtreecommitdiff
path: root/keyboards/cipulot/ec_typek/ec_switch_matrix.c
diff options
context:
space:
mode:
Diffstat (limited to 'keyboards/cipulot/ec_typek/ec_switch_matrix.c')
-rw-r--r--keyboards/cipulot/ec_typek/ec_switch_matrix.c318
1 files changed, 318 insertions, 0 deletions
diff --git a/keyboards/cipulot/ec_typek/ec_switch_matrix.c b/keyboards/cipulot/ec_typek/ec_switch_matrix.c
new file mode 100644
index 0000000000..da58a75bbc
--- /dev/null
+++ b/keyboards/cipulot/ec_typek/ec_switch_matrix.c
@@ -0,0 +1,318 @@
+/* Copyright 2023 Cipulot
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "ec_switch_matrix.h"
+#include "analog.h"
+#include "atomic_util.h"
+#include "math.h"
+#include "print.h"
+#include "wait.h"
+
+#if defined(__AVR__)
+# error "AVR platforms not supported due to a variety of reasons. Among them there are limited memory, limited number of pins and ADC not being able to give satisfactory results."
+#endif
+
+#define OPEN_DRAIN_SUPPORT defined(PAL_MODE_OUTPUT_OPENDRAIN)
+
+eeprom_ec_config_t eeprom_ec_config;
+ec_config_t ec_config;
+
+// Pin and port array
+const pin_t row_pins[] = MATRIX_ROW_PINS;
+const pin_t amux_sel_pins[] = AMUX_SEL_PINS;
+const pin_t amux_en_pins[] = AMUX_EN_PINS;
+const pin_t amux_n_col_sizes[] = AMUX_COL_CHANNELS_SIZES;
+const pin_t amux_n_col_channels[][AMUX_MAX_COLS_COUNT] = {AMUX_COL_CHANNELS};
+
+#define AMUX_SEL_PINS_COUNT ARRAY_SIZE(amux_sel_pins)
+#define EXPECTED_AMUX_SEL_PINS_COUNT ceil(log2(AMUX_MAX_COLS_COUNT)
+// Checks for the correctness of the configuration
+_Static_assert(ARRAY_SIZE(amux_en_pins) == AMUX_COUNT, "AMUX_EN_PINS doesn't have the minimum number of bits required to enable all the multiplexers available");
+// Check that number of select pins is enough to select all the channels
+_Static_assert(AMUX_SEL_PINS_COUNT == EXPECTED_AMUX_SEL_PINS_COUNT), "AMUX_SEL_PINS doesn't have the minimum number of bits required address all the channels");
+// Check that number of elements in AMUX_COL_CHANNELS_SIZES is enough to specify the number of channels for all the multiplexers available
+_Static_assert(ARRAY_SIZE(amux_n_col_sizes) == AMUX_COUNT, "AMUX_COL_CHANNELS_SIZES doesn't have the minimum number of elements required to specify the number of channels for all the multiplexers available");
+// static ec_config_t config;
+static uint16_t sw_value[MATRIX_ROWS][MATRIX_COLS];
+
+static adc_mux adcMux;
+
+// Initialize the row pins
+void init_row(void) {
+ // Set all row pins as output and low
+ for (uint8_t idx = 0; idx < MATRIX_ROWS; idx++) {
+ gpio_set_pin_output(row_pins[idx]);
+ gpio_write_pin_low(row_pins[idx]);
+ }
+}
+
+// Initialize the multiplexers
+void init_amux(void) {
+ for (uint8_t idx = 0; idx < AMUX_COUNT; idx++) {
+ gpio_set_pin_output(amux_en_pins[idx]);
+ gpio_write_pin_low(amux_en_pins[idx]);
+ }
+ for (uint8_t idx = 0; idx < AMUX_SEL_PINS_COUNT; idx++) {
+ gpio_set_pin_output(amux_sel_pins[idx]);
+ }
+}
+
+// Select the multiplexer channel of the specified multiplexer
+void select_amux_channel(uint8_t channel, uint8_t col) {
+ // Get the channel for the specified multiplexer
+ uint8_t ch = amux_n_col_channels[channel][col];
+ // momentarily disable specified multiplexer
+ gpio_write_pin_high(amux_en_pins[channel]);
+ // Select the multiplexer channel
+ for (uint8_t i = 0; i < AMUX_SEL_PINS_COUNT; i++) {
+ gpio_write_pin(amux_sel_pins[i], ch & (1 << i));
+ }
+ // re enable specified multiplexer
+ gpio_write_pin_low(amux_en_pins[channel]);
+}
+
+// Disable all the unused multiplexers
+void disable_unused_amux(uint8_t channel) {
+ // disable all the other multiplexers apart from the current selected one
+ for (uint8_t idx = 0; idx < AMUX_COUNT; idx++) {
+ if (idx != channel) {
+ gpio_write_pin_high(amux_en_pins[idx]);
+ }
+ }
+}
+// Discharge the peak hold capacitor
+void discharge_capacitor(void) {
+#ifdef OPEN_DRAIN_SUPPORT
+ gpio_write_pin_low(DISCHARGE_PIN);
+#else
+ gpio_write_pin_low(DISCHARGE_PIN);
+ gpio_set_pin_output(DISCHARGE_PIN);
+#endif
+}
+
+// Charge the peak hold capacitor
+void charge_capacitor(uint8_t row) {
+#ifdef OPEN_DRAIN_SUPPORT
+ gpio_write_pin_high(DISCHARGE_PIN);
+#else
+ gpio_set_pin_input(DISCHARGE_PIN);
+#endif
+ gpio_write_pin_high(row_pins[row]);
+}
+
+// Initialize the peripherals pins
+int ec_init(void) {
+ // Initialize ADC
+ palSetLineMode(ANALOG_PORT, PAL_MODE_INPUT_ANALOG);
+ adcMux = pinToMux(ANALOG_PORT);
+
+ // Dummy call to make sure that adcStart() has been called in the appropriate state
+ adc_read(adcMux);
+
+ // Initialize discharge pin as discharge mode
+ gpio_write_pin_low(DISCHARGE_PIN);
+#ifdef OPEN_DRAIN_SUPPORT
+ gpio_set_pin_output_open_drain(DISCHARGE_PIN);
+#else
+ gpio_set_pin_output(DISCHARGE_PIN);
+#endif
+
+ // Initialize drive lines
+ init_row();
+
+ // Initialize AMUXs
+ init_amux();
+
+ return 0;
+}
+
+// Get the noise floor
+void ec_noise_floor(void) {
+ // Initialize the noise floor
+ for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
+ for (uint8_t col = 0; col < MATRIX_COLS; col++) {
+ ec_config.noise_floor[row][col] = 0;
+ }
+ }
+
+ // Sample the noise floor
+ for (uint8_t i = 0; i < DEFAULT_NOISE_FLOOR_SAMPLING_COUNT; i++) {
+ for (uint8_t amux = 0; amux < AMUX_COUNT; amux++) {
+ disable_unused_amux(amux);
+ for (uint8_t col = 0; col < amux_n_col_sizes[amux]; col++) {
+ uint8_t sum = 0;
+ for (uint8_t i = 0; i < (amux > 0 ? amux : 0); i++)
+ sum += amux_n_col_sizes[i];
+ uint8_t adjusted_col = col + sum;
+ for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
+ ec_config.noise_floor[row][adjusted_col] += ec_readkey_raw(amux, row, col);
+ }
+ }
+ }
+ wait_ms(5);
+ }
+
+ // Average the noise floor
+ for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
+ for (uint8_t col = 0; col < MATRIX_COLS; col++) {
+ ec_config.noise_floor[row][col] /= DEFAULT_NOISE_FLOOR_SAMPLING_COUNT;
+ }
+ }
+}
+
+// Scan key values and update matrix state
+bool ec_matrix_scan(matrix_row_t current_matrix[]) {
+ bool updated = false;
+
+ for (uint8_t amux = 0; amux < AMUX_COUNT; amux++) {
+ disable_unused_amux(amux);
+ for (uint8_t col = 0; col < amux_n_col_sizes[amux]; col++) {
+ for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
+ uint8_t sum = 0;
+ for (uint8_t i = 0; i < (amux > 0 ? amux : 0); i++)
+ sum += amux_n_col_sizes[i];
+ uint8_t adjusted_col = col + sum;
+ sw_value[row][adjusted_col] = ec_readkey_raw(amux, row, col);
+
+ if (ec_config.bottoming_calibration) {
+ if (ec_config.bottoming_calibration_starter[row][adjusted_col]) {
+ ec_config.bottoming_reading[row][adjusted_col] = sw_value[row][adjusted_col];
+ ec_config.bottoming_calibration_starter[row][adjusted_col] = false;
+ } else if (sw_value[row][adjusted_col] > ec_config.bottoming_reading[row][adjusted_col]) {
+ ec_config.bottoming_reading[row][adjusted_col] = sw_value[row][adjusted_col];
+ }
+ } else {
+ updated |= ec_update_key(&current_matrix[row], row, adjusted_col, sw_value[row][adjusted_col]);
+ }
+ }
+ }
+ }
+
+ return ec_config.bottoming_calibration ? false : updated;
+}
+
+// Read the capacitive sensor value
+uint16_t ec_readkey_raw(uint8_t channel, uint8_t row, uint8_t col) {
+ uint16_t sw_value = 0;
+
+ // Select the multiplexer
+ select_amux_channel(channel, col);
+
+ // Set the row pin to low state to avoid ghosting
+ gpio_write_pin_low(row_pins[row]);
+
+ ATOMIC_BLOCK_FORCEON {
+ // Set the row pin to high state and have capacitor charge
+ charge_capacitor(row);
+ // Read the ADC value
+ sw_value = adc_read(adcMux);
+ }
+ // Discharge peak hold capacitor
+ discharge_capacitor();
+ // Waiting for the ghost capacitor to discharge fully
+ wait_us(DISCHARGE_TIME);
+
+ return sw_value;
+}
+
+// Update press/release state of key
+bool ec_update_key(matrix_row_t* current_row, uint8_t row, uint8_t col, uint16_t sw_value) {
+ bool current_state = (*current_row >> col) & 1;
+
+ // Real Time Noise Floor Calibration
+ if (sw_value < (ec_config.noise_floor[row][col] - NOISE_FLOOR_THRESHOLD)) {
+ uprintf("Noise Floor Change: %d, %d, %d\n", row, col, sw_value);
+ ec_config.noise_floor[row][col] = sw_value;
+ ec_config.rescaled_mode_0_actuation_threshold[row][col] = rescale(ec_config.mode_0_actuation_threshold, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
+ ec_config.rescaled_mode_0_release_threshold[row][col] = rescale(ec_config.mode_0_release_threshold, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
+ ec_config.rescaled_mode_1_initial_deadzone_offset[row][col] = rescale(ec_config.mode_1_initial_deadzone_offset, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
+ }
+
+ // Normal board-wide APC
+ if (ec_config.actuation_mode == 0) {
+ if (current_state && sw_value < ec_config.rescaled_mode_0_release_threshold[row][col]) {
+ *current_row &= ~(1 << col);
+ uprintf("Key released: %d, %d, %d\n", row, col, sw_value);
+ return true;
+ }
+ if ((!current_state) && sw_value > ec_config.rescaled_mode_0_actuation_threshold[row][col]) {
+ *current_row |= (1 << col);
+ uprintf("Key pressed: %d, %d, %d\n", row, col, sw_value);
+ return true;
+ }
+ }
+ // Rapid Trigger
+ else if (ec_config.actuation_mode == 1) {
+ // Is key in active zone?
+ if (sw_value > ec_config.rescaled_mode_1_initial_deadzone_offset[row][col]) {
+ // Is key pressed while in active zone?
+ if (current_state) {
+ // Is the key still moving down?
+ if (sw_value > ec_config.extremum[row][col]) {
+ ec_config.extremum[row][col] = sw_value;
+ uprintf("Key pressed: %d, %d, %d\n", row, col, sw_value);
+ }
+ // Has key moved up enough to be released?
+ else if (sw_value < ec_config.extremum[row][col] - ec_config.mode_1_release_offset) {
+ ec_config.extremum[row][col] = sw_value;
+ *current_row &= ~(1 << col);
+ uprintf("Key released: %d, %d, %d\n", row, col, sw_value);
+ return true;
+ }
+ }
+ // Key is not pressed while in active zone
+ else {
+ // Is the key still moving up?
+ if (sw_value < ec_config.extremum[row][col]) {
+ ec_config.extremum[row][col] = sw_value;
+ }
+ // Has key moved down enough to be pressed?
+ else if (sw_value > ec_config.extremum[row][col] + ec_config.mode_1_actuation_offset) {
+ ec_config.extremum[row][col] = sw_value;
+ *current_row |= (1 << col);
+ uprintf("Key pressed: %d, %d, %d\n", row, col, sw_value);
+ return true;
+ }
+ }
+ }
+ // Key is not in active zone
+ else {
+ // Check to avoid key being stuck in pressed state near the active zone threshold
+ if (sw_value < ec_config.extremum[row][col]) {
+ ec_config.extremum[row][col] = sw_value;
+ *current_row &= ~(1 << col);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+// Print the matrix values
+void ec_print_matrix(void) {
+ for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
+ for (uint8_t col = 0; col < MATRIX_COLS - 1; col++) {
+ uprintf("%4d,", sw_value[row][col]);
+ }
+ uprintf("%4d\n", sw_value[row][MATRIX_COLS - 1]);
+ }
+ print("\n");
+}
+
+// Rescale the value to a different range
+uint16_t rescale(uint16_t x, uint16_t in_min, uint16_t in_max, uint16_t out_min, uint16_t out_max) {
+ return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
+}