diff options
author | Ryan <fauxpark@gmail.com> | 2023-07-21 09:27:55 +1000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-21 09:27:55 +1000 |
commit | 4137685f8eb3ecde7ba0158a78cd9c411ee05606 (patch) | |
tree | 52e5a157409680ae62e42318c4f6f7087bef19e2 /platforms/avr | |
parent | b090354143612d2c0f5c8629510542de5bd4e29e (diff) |
backlight: split AVR PWM and timer drivers (#21540)
Diffstat (limited to 'platforms/avr')
-rw-r--r-- | platforms/avr/drivers/backlight_pwm.c | 200 | ||||
-rw-r--r-- | platforms/avr/drivers/backlight_timer.c | 267 |
2 files changed, 299 insertions, 168 deletions
diff --git a/platforms/avr/drivers/backlight_pwm.c b/platforms/avr/drivers/backlight_pwm.c index d234115641..74d25753a4 100644 --- a/platforms/avr/drivers/backlight_pwm.c +++ b/platforms/avr/drivers/backlight_pwm.c @@ -1,5 +1,5 @@ #include "backlight.h" -#include "backlight_driver_common.h" +#include "gpio.h" #include "progmem.h" #include <avr/io.h> #include <avr/interrupt.h> @@ -9,14 +9,6 @@ # define BACKLIGHT_LIMIT_VAL 255 #endif -// This logic is a bit complex, we support 3 setups: -// -// 1. Hardware PWM when backlight is wired to a PWM pin. -// Depending on this pin, we use a different output compare unit. -// 2. Software PWM with hardware timers, but the used timer -// depends on the Audio setup (Audio wins over Backlight). -// 3. Full software PWM, driven by the matrix scan, if both timers are used by Audio. - #if (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__)) && (BACKLIGHT_PIN == B5 || BACKLIGHT_PIN == B6 || BACKLIGHT_PIN == B7) # define ICRx ICR1 # define TCCRxA TCCR1A @@ -122,106 +114,34 @@ # define COMxx1 COM1B1 # define OCRxx OCR1B # endif -#elif (AUDIO_PIN != B5) && (AUDIO_PIN != B6) && (AUDIO_PIN != B7) && (AUDIO_PIN_ALT != B5) && (AUDIO_PIN_ALT != B6) && (AUDIO_PIN_ALT != B7) -// Timer 1 is not in use by Audio feature, Backlight can use it -# pragma message "Using hardware timer 1 with software PWM" -# define BACKLIGHT_PWM_TIMER -# define ICRx ICR1 -# define TCCRxA TCCR1A -# define TCCRxB TCCR1B -# define TIMERx_COMPA_vect TIMER1_COMPA_vect -# define TIMERx_OVF_vect TIMER1_OVF_vect -# if defined(__AVR_ATmega32A__) // This MCU has only one TIMSK register -# define TIMSKx TIMSK -# else -# define TIMSKx TIMSK1 -# endif -# define TOIEx TOIE1 +#endif -# define OCIExA OCIE1A -# define OCRxx OCR1A -#elif (AUDIO_PIN != C4) && (AUDIO_PIN != C5) && (AUDIO_PIN != C6) -# pragma message "Using hardware timer 3 with software PWM" -// Timer 3 is not in use by Audio feature, Backlight can use it -# define BACKLIGHT_PWM_TIMER -# define ICRx ICR1 -# define TCCRxA TCCR3A -# define TCCRxB TCCR3B -# define TIMERx_COMPA_vect TIMER3_COMPA_vect -# define TIMERx_OVF_vect TIMER3_OVF_vect -# define TIMSKx TIMSK3 -# define TOIEx TOIE3 +#ifndef BACKLIGHT_RESOLUTION +# define BACKLIGHT_RESOLUTION 0xFFFFU +#endif -# define OCIExA OCIE3A -# define OCRxx OCR3A +#if (BACKLIGHT_RESOLUTION > 0xFFFF || BACKLIGHT_RESOLUTION < 0x00FF) +# error "Backlight resolution must be between 0x00FF and 0xFFFF" #endif -#ifndef BACKLIGHT_PWM_TIMER // pwm through software +#define BREATHING_SCALE_FACTOR F_CPU / BACKLIGHT_RESOLUTION / 120 static inline void enable_pwm(void) { -# if BACKLIGHT_ON_STATE == 1 +#if BACKLIGHT_ON_STATE == 1 TCCRxA |= _BV(COMxx1); -# else +#else TCCRxA |= _BV(COMxx1) | _BV(COMxx0); -# endif +#endif } static inline void disable_pwm(void) { -# if BACKLIGHT_ON_STATE == 1 +#if BACKLIGHT_ON_STATE == 1 TCCRxA &= ~(_BV(COMxx1)); -# else +#else TCCRxA &= ~(_BV(COMxx1) | _BV(COMxx0)); -# endif -} - #endif - -#ifdef BACKLIGHT_PWM_TIMER - -// The idea of software PWM assisted by hardware timers is the following -// we use the hardware timer in fast PWM mode like for hardware PWM, but -// instead of letting the Output Match Comparator control the led pin -// (which is not possible since the backlight is not wired to PWM pins on the -// CPU), we do the LED on/off by oursleves. -// The timer is setup to count up to 0xFFFF, and we set the Output Compare -// register to the current 16bits backlight level (after CIE correction). -// This means the CPU will trigger a compare match interrupt when the counter -// reaches the backlight level, where we turn off the LEDs, -// but also an overflow interrupt when the counter rolls back to 0, -// in which we're going to turn on the LEDs. -// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz, -// or F_CPU/BACKLIGHT_CUSTOM_RESOLUTION if used. - -// Triggered when the counter reaches the OCRx value -ISR(TIMERx_COMPA_vect) { - backlight_pins_off(); } -// Triggered when the counter reaches the TOP value -// this one triggers at F_CPU/ICRx = 16MHz/65536 =~ 244 Hz -ISR(TIMERx_OVF_vect) { -# ifdef BACKLIGHT_BREATHING - if (is_breathing()) { - breathing_task(); - } -# endif - // for very small values of OCRxx (or backlight level) - // we can't guarantee this whole code won't execute - // at the same time as the compare match interrupt - // which means that we might turn on the leds while - // trying to turn them off, leading to flickering - // artifacts (especially while breathing, because breathing_task - // takes many computation cycles). - // so better not turn them on while the counter TOP is very low. - if (OCRxx > ICRx / 250 + 5) { - backlight_pins_on(); - } -} - -#endif - -#define TIMER_TOP 0xFFFFU - // See http://jared.geek.nz/2013/feb/linear-led-pwm static uint16_t cie_lightness(uint16_t v) { if (v <= (uint32_t)ICRx / 12) // If the value is less than or equal to ~8% of max @@ -254,26 +174,11 @@ void backlight_set(uint8_t level) { if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS; if (level == 0) { -#ifdef BACKLIGHT_PWM_TIMER - if (OCRxx) { - TIMSKx &= ~(_BV(OCIExA)); - TIMSKx &= ~(_BV(TOIEx)); - } -#else // Turn off PWM control on backlight pin disable_pwm(); -#endif - backlight_pins_off(); } else { -#ifdef BACKLIGHT_PWM_TIMER - if (!OCRxx) { - TIMSKx |= _BV(OCIExA); - TIMSKx |= _BV(TOIEx); - } -#else // Turn on PWM control of backlight pin enable_pwm(); -#endif } // Set the brightness set_pwm(cie_lightness(rescale_limit_val(ICRx * (uint32_t)level / BACKLIGHT_LEVELS))); @@ -282,7 +187,6 @@ void backlight_set(uint8_t level) { void backlight_task(void) {} #ifdef BACKLIGHT_BREATHING - # define BREATHING_NO_HALT 0 # define BREATHING_HALT_OFF 1 # define BREATHING_HALT_ON 2 @@ -293,39 +197,20 @@ static uint16_t breathing_counter = 0; static uint8_t breath_scale_counter = 1; /* Run the breathing loop at ~120Hz*/ -const uint8_t breathing_ISR_frequency = 120; -static uint16_t breathing_freq_scale_factor = 2; - -# ifdef BACKLIGHT_PWM_TIMER -static bool breathing = false; - -bool is_breathing(void) { - return breathing; -} - -# define breathing_interrupt_enable() \ - do { \ - breathing = true; \ - } while (0) -# define breathing_interrupt_disable() \ - do { \ - breathing = false; \ - } while (0) -# else +const uint8_t breathing_ISR_frequency = 120; bool is_breathing(void) { return !!(TIMSKx & _BV(TOIEx)); } -# define breathing_interrupt_enable() \ - do { \ - TIMSKx |= _BV(TOIEx); \ - } while (0) -# define breathing_interrupt_disable() \ - do { \ - TIMSKx &= ~_BV(TOIEx); \ - } while (0) -# endif +# define breathing_interrupt_enable() \ + do { \ + TIMSKx |= _BV(TOIEx); \ + } while (0) +# define breathing_interrupt_disable() \ + do { \ + TIMSKx &= ~_BV(TOIEx); \ + } while (0) # define breathing_min() \ do { \ @@ -374,20 +259,14 @@ static inline uint16_t scale_backlight(uint16_t v) { return v / BACKLIGHT_LEVELS * get_backlight_level(); } -# ifdef BACKLIGHT_PWM_TIMER -void breathing_task(void) -# else /* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run * about 244 times per second. * * The following ISR runs at F_CPU/ISRx. With a 16MHz clock and default pwm resolution, that means 244Hz */ -ISR(TIMERx_OVF_vect) -# endif -{ - +ISR(TIMERx_OVF_vect) { // Only run this ISR at ~120 Hz - if (breath_scale_counter++ == breathing_freq_scale_factor) { + if (breath_scale_counter++ == BREATHING_SCALE_FACTOR) { breath_scale_counter = 1; } else { return; @@ -412,19 +291,17 @@ ISR(TIMERx_OVF_vect) #endif // BACKLIGHT_BREATHING void backlight_init_ports(void) { - // Setup backlight pin as output and output to on state. - backlight_pins_init(); + setPinOutput(BACKLIGHT_PIN); +#if BACKLIGHT_ON_STATE == 1 + writePinLow(BACKLIGHT_PIN); +#else + writePinHigh(BACKLIGHT_PIN); +#endif // I could write a wall of text here to explain... but TL;DW // Go read the ATmega32u4 datasheet. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on -#ifdef BACKLIGHT_PWM_TIMER - // TimerX setup, Fast PWM mode count to TOP set in ICRx - TCCRxA = _BV(WGM11); // = 0b00000010; - // clock select clk/1 - TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001; -#else // hardware PWM // Pin PB7 = OCR1C (Timer 1, Channel C) // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0 // (i.e. start high, go low when counter matches.) @@ -438,23 +315,10 @@ void backlight_init_ports(void) { */ TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010; TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001; -#endif - -#ifdef BACKLIGHT_CUSTOM_RESOLUTION -# if (BACKLIGHT_CUSTOM_RESOLUTION > 0xFFFF || BACKLIGHT_CUSTOM_RESOLUTION < 1) -# error "This out of range of the timer capabilities" -# elif (BACKLIGHT_CUSTOM_RESOLUTION < 0xFF) -# warning "Resolution lower than 0xFF isn't recommended" -# endif -# ifdef BACKLIGHT_BREATHING - breathing_freq_scale_factor = F_CPU / BACKLIGHT_CUSTOM_RESOLUTION / 120; -# endif - ICRx = BACKLIGHT_CUSTOM_RESOLUTION; -#else - ICRx = TIMER_TOP; -#endif + ICRx = BACKLIGHT_RESOLUTION; backlight_init(); + #ifdef BACKLIGHT_BREATHING if (is_backlight_breathing()) { breathing_enable(); diff --git a/platforms/avr/drivers/backlight_timer.c b/platforms/avr/drivers/backlight_timer.c new file mode 100644 index 0000000000..e1f4286557 --- /dev/null +++ b/platforms/avr/drivers/backlight_timer.c @@ -0,0 +1,267 @@ +#include "backlight.h" +#include "backlight_driver_common.h" +#include "progmem.h" +#include <avr/io.h> +#include <avr/interrupt.h> + +// Maximum duty cycle limit +#ifndef BACKLIGHT_LIMIT_VAL +# define BACKLIGHT_LIMIT_VAL 255 +#endif + +#ifndef BACKLIGHT_PWM_TIMER +# define BACKLIGHT_PWM_TIMER 1 +#endif + +#if BACKLIGHT_PWM_TIMER == 1 +# define ICRx ICR1 +# define TCCRxA TCCR1A +# define TCCRxB TCCR1B +# define TIMERx_COMPA_vect TIMER1_COMPA_vect +# define TIMERx_OVF_vect TIMER1_OVF_vect +# if defined(__AVR_ATmega32A__) // This MCU has only one TIMSK register +# define TIMSKx TIMSK +# else +# define TIMSKx TIMSK1 +# endif +# define TOIEx TOIE1 + +# define OCIExA OCIE1A +# define OCRxx OCR1A +#elif BACKLIGHT_PWM_TIMER == 3 +# define ICRx ICR1 +# define TCCRxA TCCR3A +# define TCCRxB TCCR3B +# define TIMERx_COMPA_vect TIMER3_COMPA_vect +# define TIMERx_OVF_vect TIMER3_OVF_vect +# define TIMSKx TIMSK3 +# define TOIEx TOIE3 + +# define OCIExA OCIE3A +# define OCRxx OCR3A +#else +# error Invalid backlight PWM timer! +#endif + +#ifndef BACKLIGHT_RESOLUTION +# define BACKLIGHT_RESOLUTION 0xFFFFU +#endif + +#if (BACKLIGHT_RESOLUTION > 0xFFFF || BACKLIGHT_RESOLUTION < 0x00FF) +# error "Backlight resolution must be between 0x00FF and 0xFFFF" +#endif + +#define BREATHING_SCALE_FACTOR F_CPU / BACKLIGHT_RESOLUTION / 120 + +// The idea of software PWM assisted by hardware timers is the following +// we use the hardware timer in fast PWM mode like for hardware PWM, but +// instead of letting the Output Match Comparator control the led pin +// (which is not possible since the backlight is not wired to PWM pins on the +// CPU), we do the LED on/off by oursleves. +// The timer is setup to count up to 0xFFFF, and we set the Output Compare +// register to the current 16bits backlight level (after CIE correction). +// This means the CPU will trigger a compare match interrupt when the counter +// reaches the backlight level, where we turn off the LEDs, +// but also an overflow interrupt when the counter rolls back to 0, +// in which we're going to turn on the LEDs. +// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz, +// or F_CPU/BACKLIGHT_RESOLUTION if used. + +// Triggered when the counter reaches the OCRx value +ISR(TIMERx_COMPA_vect) { + backlight_pins_off(); +} + +// Triggered when the counter reaches the TOP value +// this one triggers at F_CPU/ICRx = 16MHz/65536 =~ 244 Hz +ISR(TIMERx_OVF_vect) { +#ifdef BACKLIGHT_BREATHING + if (is_breathing()) { + breathing_task(); + } +#endif + // for very small values of OCRxx (or backlight level) + // we can't guarantee this whole code won't execute + // at the same time as the compare match interrupt + // which means that we might turn on the leds while + // trying to turn them off, leading to flickering + // artifacts (especially while breathing, because breathing_task + // takes many computation cycles). + // so better not turn them on while the counter TOP is very low. + if (OCRxx > ICRx / 250 + 5) { + backlight_pins_on(); + } +} + +// See http://jared.geek.nz/2013/feb/linear-led-pwm +static uint16_t cie_lightness(uint16_t v) { + if (v <= (uint32_t)ICRx / 12) // If the value is less than or equal to ~8% of max + { + return v / 9; // Same as dividing by 900% + } else { + // In the next two lines values are bit-shifted. This is to avoid loosing decimals in integer math. + uint32_t y = (((uint32_t)v + (uint32_t)ICRx / 6) << 5) / ((uint32_t)ICRx / 6 + ICRx); // If above 8%, add ~16% of max, and normalize with (max + ~16% max) + uint32_t out = (y * y * y * ICRx) >> 15; // Cube it and undo the bit-shifting. (which is now three times as much due to the cubing) + + if (out > ICRx) // Avoid overflows + { + out = ICRx; + } + return (uint16_t)out; + } +} + +// rescale the supplied backlight value to be in terms of the value limit // range for val is [0..ICRx]. PWM pin is high while the timer count is below val. +static uint32_t rescale_limit_val(uint32_t val) { + return (val * (BACKLIGHT_LIMIT_VAL + 1)) / 256; +} + +// range for val is [0..ICRx]. PWM pin is high while the timer count is below val. +static inline void set_pwm(uint16_t val) { + OCRxx = val; +} + +void backlight_set(uint8_t level) { + if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS; + + if (level == 0) { + if (OCRxx) { + TIMSKx &= ~(_BV(OCIExA)); + TIMSKx &= ~(_BV(TOIEx)); + } + backlight_pins_off(); + } else { + if (!OCRxx) { + TIMSKx |= _BV(OCIExA); + TIMSKx |= _BV(TOIEx); + } + } + // Set the brightness + set_pwm(cie_lightness(rescale_limit_val(ICRx * (uint32_t)level / BACKLIGHT_LEVELS))); +} + +void backlight_task(void) {} + +#ifdef BACKLIGHT_BREATHING +# define BREATHING_NO_HALT 0 +# define BREATHING_HALT_OFF 1 +# define BREATHING_HALT_ON 2 +# define BREATHING_STEPS 128 + +static uint8_t breathing_halt = BREATHING_NO_HALT; +static uint16_t breathing_counter = 0; + +static uint8_t breath_scale_counter = 1; +/* Run the breathing loop at ~120Hz*/ +const uint8_t breathing_ISR_frequency = 120; + +static bool breathing = false; + +bool is_breathing(void) { + return breathing; +} + +# define breathing_interrupt_enable() \ + do { \ + breathing = true; \ + } while (0) +# define breathing_interrupt_disable() \ + do { \ + breathing = false; \ + } while (0) + +# define breathing_min() \ + do { \ + breathing_counter = 0; \ + } while (0) +# define breathing_max() \ + do { \ + breathing_counter = get_breathing_period() * breathing_ISR_frequency / 2; \ + } while (0) + +void breathing_enable(void) { + breathing_counter = 0; + breathing_halt = BREATHING_NO_HALT; + breathing_interrupt_enable(); +} + +void breathing_pulse(void) { + if (get_backlight_level() == 0) + breathing_min(); + else + breathing_max(); + breathing_halt = BREATHING_HALT_ON; + breathing_interrupt_enable(); +} + +void breathing_disable(void) { + breathing_interrupt_disable(); + // Restore backlight level + backlight_set(get_backlight_level()); +} + +void breathing_self_disable(void) { + if (get_backlight_level() == 0) + breathing_halt = BREATHING_HALT_OFF; + else + breathing_halt = BREATHING_HALT_ON; +} + +/* To generate breathing curve in python: + * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)] + */ +static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; + +// Use this before the cie_lightness function. +static inline uint16_t scale_backlight(uint16_t v) { + return v / BACKLIGHT_LEVELS * get_backlight_level(); +} + +void breathing_task(void) { + // Only run this ISR at ~120 Hz + if (breath_scale_counter++ == BREATHING_SCALE_FACTOR) { + breath_scale_counter = 1; + } else { + return; + } + uint16_t interval = (uint16_t)get_breathing_period() * breathing_ISR_frequency / BREATHING_STEPS; + // resetting after one period to prevent ugly reset at overflow. + breathing_counter = (breathing_counter + 1) % (get_breathing_period() * breathing_ISR_frequency); + uint8_t index = breathing_counter / interval; + // limit index to max step value + if (index >= BREATHING_STEPS) { + index = BREATHING_STEPS - 1; + } + + if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) || ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1))) { + breathing_interrupt_disable(); + } + + // Set PWM to a brightnessvalue scaled to the configured resolution + set_pwm(cie_lightness(rescale_limit_val(scale_backlight((uint32_t)pgm_read_byte(&breathing_table[index]) * ICRx / 255)))); +} + +#endif // BACKLIGHT_BREATHING + +void backlight_init_ports(void) { + // Setup backlight pin as output and output to on state. + backlight_pins_init(); + + // I could write a wall of text here to explain... but TL;DW + // Go read the ATmega32u4 datasheet. + // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on + + // TimerX setup, Fast PWM mode count to TOP set in ICRx + TCCRxA = _BV(WGM11); // = 0b00000010; + // clock select clk/1 + TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001; + ICRx = BACKLIGHT_RESOLUTION; + + backlight_init(); + +#ifdef BACKLIGHT_BREATHING + if (is_backlight_breathing()) { + breathing_enable(); + } +#endif +} |