summaryrefslogtreecommitdiff
path: root/platforms/chibios/eeprom_stm32.c
blob: 8bf0b19c3d156fd36b55212d22e49467d738f4b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
 * This software is experimental and a work in progress.
 * Under no circumstances should these files be used in relation to any critical system(s).
 * Use of these files is at your own risk.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * This files are free to use from http://engsta.com/stm32-flash-memory-eeprom-emulator/ by
 * Artur F.
 *
 * Modifications for QMK and STM32F303 by Yiancar
 * Modifications to add flash wear leveling by Ilya Zhuravlev
 * Modifications to increase flash density by Don Kjer
 */

#include <stdio.h>
#include <stdbool.h>
#include "util.h"
#include "debug.h"
#include "eeprom_stm32.h"
#include "flash_stm32.h"

/*
 * We emulate eeprom by writing a snapshot compacted view of eeprom contents,
 * followed by a write log of any change since that snapshot:
 *
 * === SIMULATED EEPROM CONTENTS ===
 *
 * ┌─ Compacted ┬ Write Log ─┐
 * │............│[BYTE][BYTE]│
 * │FFFF....FFFF│[WRD0][WRD1]│
 * │FFFFFFFFFFFF│[WORD][NEXT]│
 * │....FFFFFFFF│[BYTE][WRD0]│
 * ├────────────┼────────────┤
 * └──PAGE_BASE │            │
 *    PAGE_LAST─┴─WRITE_BASE │
 *                WRITE_LAST ┘
 *
 * Compacted contents are the 1's complement of the actual EEPROM contents.
 * e.g. An 'FFFF' represents a '0000' value.
 *
 * The size of the 'compacted' area is equal to the size of the 'emulated' eeprom.
 * The size of the compacted-area and write log are configurable, and the combined
 * size of Compacted + WriteLog is a multiple FEE_PAGE_SIZE, which is MCU dependent.
 * Simulated Eeprom contents are located at the end of available flash space.
 *
 * The following configuration defines can be set:
 *
 * FEE_PAGE_COUNT   # Total number of pages to use for eeprom simulation (Compact + Write log)
 * FEE_DENSITY_BYTES   # Size of simulated eeprom. (Defaults to half the space allocated by FEE_PAGE_COUNT)
 * NOTE: The current implementation does not include page swapping,
 * and FEE_DENSITY_BYTES will consume that amount of RAM as a cached view of actual EEPROM contents.
 *
 * The maximum size of FEE_DENSITY_BYTES is currently 16384. The write log size equals
 * FEE_PAGE_COUNT * FEE_PAGE_SIZE - FEE_DENSITY_BYTES.
 * The larger the write log, the less frequently the compacted area needs to be rewritten.
 *
 *
 * *** General Algorithm ***
 *
 * During initialization:
 * The contents of the Compacted-flash area are loaded and the 1's complement value
 * is cached into memory (e.g. 0xFFFF in Flash represents 0x0000 in cache).
 * Write log entries are processed until a 0xFFFF is reached.
 * Each log entry updates a byte or word in the cache.
 *
 * During reads:
 * EEPROM contents are given back directly from the cache in memory.
 *
 * During writes:
 * The contents of the cache is updated first.
 * If the Compacted-flash area corresponding to the write address is unprogrammed, the 1's complement of the value is written directly into Compacted-flash
 * Otherwise:
 * If the write log is full, erase both the Compacted-flash area and the Write log, then write cached contents to the Compacted-flash area.
 * Otherwise a Write log entry is constructed and appended to the next free position in the Write log.
 *
 *
 * *** Write Log Structure ***
 *
 * Write log entries allow for optimized byte writes to addresses below 128. Writing 0 or 1 words are also optimized when word-aligned.
 *
 * === WRITE LOG ENTRY FORMATS ===
 *
 * ╔═══ Byte-Entry ══╗
 * ║0XXXXXXX║YYYYYYYY║
 * ║ └──┬──┘║└──┬───┘║
 * ║ Address║ Value  ║
 * ╚════════╩════════╝
 * 0 <= Address < 0x80 (128)
 *
 * ╔ Word-Encoded 0 ╗
 * ║100XXXXXXXXXXXXX║
 * ║  │└─────┬─────┘║
 * ║  │Address >> 1 ║
 * ║  └── Value: 0  ║
 * ╚════════════════╝
 * 0 <= Address <= 0x3FFE (16382)
 *
 * ╔ Word-Encoded 1 ╗
 * ║101XXXXXXXXXXXXX║
 * ║  │└─────┬─────┘║
 * ║  │Address >> 1 ║
 * ║  └── Value: 1  ║
 * ╚════════════════╝
 * 0 <= Address <= 0x3FFE (16382)
 *
 * ╔═══ Reserved ═══╗
 * ║110XXXXXXXXXXXXX║
 * ╚════════════════╝
 *
 * ╔═══════════ Word-Next ═══════════╗
 * ║111XXXXXXXXXXXXX║YYYYYYYYYYYYYYYY║
 * ║   └─────┬─────┘║└───────┬──────┘║
 * ║(Address-128)>>1║     ~Value     ║
 * ╚════════════════╩════════════════╝
 * (  0 <= Address <  0x0080 (128): Reserved)
 * 0x80 <= Address <= 0x3FFE (16382)
 *
 * Write Log entry ranges:
 * 0x0000 ... 0x7FFF - Byte-Entry;     address is (Entry & 0x7F00) >> 4; value is (Entry & 0xFF)
 * 0x8000 ... 0x9FFF - Word-Encoded 0; address is (Entry & 0x1FFF) << 1; value is 0
 * 0xA000 ... 0xBFFF - Word-Encoded 1; address is (Entry & 0x1FFF) << 1; value is 1
 * 0xC000 ... 0xDFFF - Reserved
 * 0xE000 ... 0xFFBF - Word-Next;      address is (Entry & 0x1FFF) << 1 + 0x80; value is ~(Next_Entry)
 * 0xFFC0 ... 0xFFFE - Reserved
 * 0xFFFF            - Unprogrammed
 *
 */

#include "eeprom_stm32_defs.h"
/* These bits are used for optimizing encoding of bytes, 0 and 1 */
#define FEE_WORD_ENCODING 0x8000
#define FEE_VALUE_NEXT 0x6000
#define FEE_VALUE_RESERVED 0x4000
#define FEE_VALUE_ENCODED 0x2000
#define FEE_BYTE_RANGE 0x80

/* Flash word value after erase */
#define FEE_EMPTY_WORD ((uint16_t)0xFFFF)

#if !defined(FEE_PAGE_SIZE) || !defined(FEE_PAGE_COUNT) || !defined(FEE_MCU_FLASH_SIZE) || !defined(FEE_PAGE_BASE_ADDRESS)
#    error "not implemented."
#endif

/* In-memory contents of emulated eeprom for faster access */
/* *TODO: Implement page swapping */
static uint16_t WordBuf[FEE_DENSITY_BYTES / 2];
static uint8_t *DataBuf = (uint8_t *)WordBuf;

/* Pointer to the first available slot within the write log */
static uint16_t *empty_slot;

// #define DEBUG_EEPROM_OUTPUT

/*
 * Debug print utils
 */

#if defined(DEBUG_EEPROM_OUTPUT)

#    define debug_eeprom debug_enable
#    define eeprom_println(s) println(s)
#    define eeprom_printf(fmt, ...) xprintf(fmt, ##__VA_ARGS__);

#else /* NO_DEBUG */

#    define debug_eeprom false
#    define eeprom_println(s)
#    define eeprom_printf(fmt, ...)

#endif /* NO_DEBUG */

void print_eeprom(void) {
#ifndef NO_DEBUG
    int empty_rows = 0;
    for (uint16_t i = 0; i < FEE_DENSITY_BYTES; i++) {
        if (i % 16 == 0) {
            if (i >= FEE_DENSITY_BYTES - 16) {
                /* Make sure we display the last row */
                empty_rows = 0;
            }
            /* Check if this row is uninitialized */
            ++empty_rows;
            for (uint16_t j = 0; j < 16; j++) {
                if (DataBuf[i + j]) {
                    empty_rows = 0;
                    break;
                }
            }
            if (empty_rows > 1) {
                /* Repeat empty row */
                if (empty_rows == 2) {
                    /* Only display the first repeat empty row */
                    println("*");
                }
                i += 15;
                continue;
            }
            xprintf("%04x", i);
        }
        if (i % 8 == 0) print(" ");

        xprintf(" %02x", DataBuf[i]);
        if ((i + 1) % 16 == 0) {
            println("");
        }
    }
#endif
}

uint16_t EEPROM_Init(void) {
    /* Load emulated eeprom contents from compacted flash into memory */
    uint16_t *src  = (uint16_t *)FEE_COMPACTED_BASE_ADDRESS;
    uint16_t *dest = (uint16_t *)DataBuf;
    for (; src < (uint16_t *)FEE_COMPACTED_LAST_ADDRESS; ++src, ++dest) {
        *dest = ~*src;
    }

    if (debug_eeprom) {
        println("EEPROM_Init Compacted Pages:");
        print_eeprom();
        println("EEPROM_Init Write Log:");
    }

    /* Replay write log */
    uint16_t *log_addr;
    for (log_addr = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS; log_addr < (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS; ++log_addr) {
        uint16_t address = *log_addr;
        if (address == FEE_EMPTY_WORD) {
            break;
        }
        /* Check for lowest 128-bytes optimization */
        if (!(address & FEE_WORD_ENCODING)) {
            uint8_t bvalue = (uint8_t)address;
            address >>= 8;
            DataBuf[address] = bvalue;
            eeprom_printf("DataBuf[0x%02x] = 0x%02x;\n", address, bvalue);
        } else {
            uint16_t wvalue;
            /* Check if value is in next word */
            if ((address & FEE_VALUE_NEXT) == FEE_VALUE_NEXT) {
                /* Read value from next word */
                if (++log_addr >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
                    break;
                }
                wvalue = ~*log_addr;
                if (!wvalue) {
                    eeprom_printf("Incomplete write at log_addr: 0x%04x;\n", (uint32_t)log_addr);
                    /* Possibly incomplete write.  Ignore and continue */
                    continue;
                }
                address &= 0x1FFF;
                address <<= 1;
                /* Writes to addresses less than 128 are byte log entries */
                address += FEE_BYTE_RANGE;
            } else {
                /* Reserved for future use */
                if (address & FEE_VALUE_RESERVED) {
                    eeprom_printf("Reserved encoded value at log_addr: 0x%04x;\n", (uint32_t)log_addr);
                    continue;
                }
                /* Optimization for 0 or 1 values. */
                wvalue = (address & FEE_VALUE_ENCODED) >> 13;
                address &= 0x1FFF;
                address <<= 1;
            }
            if (address < FEE_DENSITY_BYTES) {
                eeprom_printf("DataBuf[0x%04x] = 0x%04x;\n", address, wvalue);
                *(uint16_t *)(&DataBuf[address]) = wvalue;
            } else {
                eeprom_printf("DataBuf[0x%04x] cannot be set to 0x%04x [BAD ADDRESS]\n", address, wvalue);
            }
        }
    }

    empty_slot = log_addr;

    if (debug_eeprom) {
        println("EEPROM_Init Final DataBuf:");
        print_eeprom();
    }

    return FEE_DENSITY_BYTES;
}

/* Clear flash contents (doesn't touch in-memory DataBuf) */
static void eeprom_clear(void) {
    FLASH_Unlock();

    for (uint16_t page_num = 0; page_num < FEE_PAGE_COUNT; ++page_num) {
        eeprom_printf("FLASH_ErasePage(0x%04x)\n", (uint32_t)(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE)));
        FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
    }

    FLASH_Lock();

    empty_slot = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS;
    eeprom_printf("eeprom_clear empty_slot: 0x%08x\n", (uint32_t)empty_slot);
}

/* Erase emulated eeprom */
void EEPROM_Erase(void) {
    eeprom_println("EEPROM_Erase");
    /* Erase compacted pages and write log */
    eeprom_clear();
    /* re-initialize to reset DataBuf */
    EEPROM_Init();
}

/* Compact write log */
static uint8_t eeprom_compact(void) {
    /* Erase compacted pages and write log */
    eeprom_clear();

    FLASH_Unlock();

    FLASH_Status final_status = FLASH_COMPLETE;

    /* Write emulated eeprom contents from memory to compacted flash */
    uint16_t *src  = (uint16_t *)DataBuf;
    uintptr_t dest = FEE_COMPACTED_BASE_ADDRESS;
    uint16_t  value;
    for (; dest < FEE_COMPACTED_LAST_ADDRESS; ++src, dest += 2) {
        value = *src;
        if (value) {
            eeprom_printf("FLASH_ProgramHalfWord(0x%04x, 0x%04x)\n", (uint32_t)dest, ~value);
            FLASH_Status status = FLASH_ProgramHalfWord(dest, ~value);
            if (status != FLASH_COMPLETE) final_status = status;
        }
    }

    FLASH_Lock();

    if (debug_eeprom) {
        println("eeprom_compacted:");
        print_eeprom();
    }

    return final_status;
}

static uint8_t eeprom_write_direct_entry(uint16_t Address) {
    /* Check if we can just write this directly to the compacted flash area */
    uintptr_t directAddress = FEE_COMPACTED_BASE_ADDRESS + (Address & 0xFFFE);
    if (*(uint16_t *)directAddress == FEE_EMPTY_WORD) {
        /* Write the value directly to the compacted area without a log entry */
        uint16_t value = ~*(uint16_t *)(&DataBuf[Address & 0xFFFE]);
        /* Early exit if a write isn't needed */
        if (value == FEE_EMPTY_WORD) return FLASH_COMPLETE;

        FLASH_Unlock();

        eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x) [DIRECT]\n", (uint32_t)directAddress, value);
        FLASH_Status status = FLASH_ProgramHalfWord(directAddress, value);

        FLASH_Lock();
        return status;
    }
    return 0;
}

static uint8_t eeprom_write_log_word_entry(uint16_t Address) {
    FLASH_Status final_status = FLASH_COMPLETE;

    uint16_t value = *(uint16_t *)(&DataBuf[Address]);
    eeprom_printf("eeprom_write_log_word_entry(0x%04x): 0x%04x\n", Address, value);

    /* MSB signifies the lowest 128-byte optimization is not in effect */
    uint16_t encoding = FEE_WORD_ENCODING;
    uint8_t  entry_size;
    if (value <= 1) {
        encoding |= value << 13;
        entry_size = 2;
    } else {
        encoding |= FEE_VALUE_NEXT;
        entry_size = 4;
        /* Writes to addresses less than 128 are byte log entries */
        Address -= FEE_BYTE_RANGE;
    }

    /* if we can't find an empty spot, we must compact emulated eeprom */
    if (empty_slot > (uint16_t *)(FEE_WRITE_LOG_LAST_ADDRESS - entry_size)) {
        /* compact the write log into the compacted flash area */
        return eeprom_compact();
    }

    /* Word log writes should be word-aligned.  Take back a bit */
    Address >>= 1;
    Address |= encoding;

    /* ok we found a place let's write our data */
    FLASH_Unlock();

    /* address */
    eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, Address);
    final_status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, Address);

    /* value */
    if (encoding == (FEE_WORD_ENCODING | FEE_VALUE_NEXT)) {
        eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, ~value);
        FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, ~value);
        if (status != FLASH_COMPLETE) final_status = status;
    }

    FLASH_Lock();

    return final_status;
}

static uint8_t eeprom_write_log_byte_entry(uint16_t Address) {
    eeprom_printf("eeprom_write_log_byte_entry(0x%04x): 0x%02x\n", Address, DataBuf[Address]);

    /* if couldn't find an empty spot, we must compact emulated eeprom */
    if (empty_slot >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
        /* compact the write log into the compacted flash area */
        return eeprom_compact();
    }

    /* ok we found a place let's write our data */
    FLASH_Unlock();

    /* Pack address and value into the same word */
    uint16_t value = (Address << 8) | DataBuf[Address];

    /* write to flash */
    eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, value);
    FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, value);

    FLASH_Lock();

    return status;
}

uint8_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
    /* if the address is out-of-bounds, do nothing */
    if (Address >= FEE_DENSITY_BYTES) {
        eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [BAD ADDRESS]\n", Address, DataByte);
        return FLASH_BAD_ADDRESS;
    }

    /* if the value is the same, don't bother writing it */
    if (DataBuf[Address] == DataByte) {
        eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [SKIP SAME]\n", Address, DataByte);
        return 0;
    }

    /* keep DataBuf cache in sync */
    DataBuf[Address] = DataByte;
    eeprom_printf("EEPROM_WriteDataByte DataBuf[0x%04x] = 0x%02x\n", Address, DataBuf[Address]);

    /* perform the write into flash memory */
    /* First, attempt to write directly into the compacted flash area */
    FLASH_Status status = eeprom_write_direct_entry(Address);
    if (!status) {
        /* Otherwise append to the write log */
        if (Address < FEE_BYTE_RANGE) {
            status = eeprom_write_log_byte_entry(Address);
        } else {
            status = eeprom_write_log_word_entry(Address & 0xFFFE);
        }
    }
    if (status != 0 && status != FLASH_COMPLETE) {
        eeprom_printf("EEPROM_WriteDataByte [STATUS == %d]\n", status);
    }
    return status;
}

uint8_t EEPROM_WriteDataWord(uint16_t Address, uint16_t DataWord) {
    /* if the address is out-of-bounds, do nothing */
    if (Address >= FEE_DENSITY_BYTES) {
        eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [BAD ADDRESS]\n", Address, DataWord);
        return FLASH_BAD_ADDRESS;
    }

    /* Check for word alignment */
    FLASH_Status final_status = FLASH_COMPLETE;
    if (Address % 2) {
        final_status        = EEPROM_WriteDataByte(Address, DataWord);
        FLASH_Status status = EEPROM_WriteDataByte(Address + 1, DataWord >> 8);
        if (status != FLASH_COMPLETE) final_status = status;
        if (final_status != 0 && final_status != FLASH_COMPLETE) {
            eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
        }
        return final_status;
    }

    /* if the value is the same, don't bother writing it */
    uint16_t oldValue = *(uint16_t *)(&DataBuf[Address]);
    if (oldValue == DataWord) {
        eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [SKIP SAME]\n", Address, DataWord);
        return 0;
    }

    /* keep DataBuf cache in sync */
    *(uint16_t *)(&DataBuf[Address]) = DataWord;
    eeprom_printf("EEPROM_WriteDataWord DataBuf[0x%04x] = 0x%04x\n", Address, *(uint16_t *)(&DataBuf[Address]));

    /* perform the write into flash memory */
    /* First, attempt to write directly into the compacted flash area */
    final_status = eeprom_write_direct_entry(Address);
    if (!final_status) {
        /* Otherwise append to the write log */
        /* Check if we need to fall back to byte write */
        if (Address < FEE_BYTE_RANGE) {
            final_status = FLASH_COMPLETE;
            /* Only write a byte if it has changed */
            if ((uint8_t)oldValue != (uint8_t)DataWord) {
                final_status = eeprom_write_log_byte_entry(Address);
            }
            FLASH_Status status = FLASH_COMPLETE;
            /* Only write a byte if it has changed */
            if ((oldValue >> 8) != (DataWord >> 8)) {
                status = eeprom_write_log_byte_entry(Address + 1);
            }
            if (status != FLASH_COMPLETE) final_status = status;
        } else {
            final_status = eeprom_write_log_word_entry(Address);
        }
    }
    if (final_status != 0 && final_status != FLASH_COMPLETE) {
        eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
    }
    return final_status;
}

uint8_t EEPROM_ReadDataByte(uint16_t Address) {
    uint8_t DataByte = 0xFF;

    if (Address < FEE_DENSITY_BYTES) {
        DataByte = DataBuf[Address];
    }

    eeprom_printf("EEPROM_ReadDataByte(0x%04x): 0x%02x\n", Address, DataByte);

    return DataByte;
}

uint16_t EEPROM_ReadDataWord(uint16_t Address) {
    uint16_t DataWord = 0xFFFF;

    if (Address < FEE_DENSITY_BYTES - 1) {
        /* Check word alignment */
        if (Address % 2) {
            DataWord = DataBuf[Address] | (DataBuf[Address + 1] << 8);
        } else {
            DataWord = *(uint16_t *)(&DataBuf[Address]);
        }
    }

    eeprom_printf("EEPROM_ReadDataWord(0x%04x): 0x%04x\n", Address, DataWord);

    return DataWord;
}

/*****************************************************************************
 *  Bind to eeprom_driver.c
 *******************************************************************************/
void eeprom_driver_init(void) { EEPROM_Init(); }

void eeprom_driver_erase(void) { EEPROM_Erase(); }

void eeprom_read_block(void *buf, const void *addr, size_t len) {
    const uint8_t *src  = (const uint8_t *)addr;
    uint8_t *      dest = (uint8_t *)buf;

    /* Check word alignment */
    if (len && (uintptr_t)src % 2) {
        /* Read the unaligned first byte */
        *dest++ = EEPROM_ReadDataByte((const uintptr_t)src++);
        --len;
    }

    uint16_t value;
    bool     aligned = ((uintptr_t)dest % 2 == 0);
    while (len > 1) {
        value = EEPROM_ReadDataWord((const uintptr_t)((uint16_t *)src));
        if (aligned) {
            *(uint16_t *)dest = value;
            dest += 2;
        } else {
            *dest++ = value;
            *dest++ = value >> 8;
        }
        src += 2;
        len -= 2;
    }
    if (len) {
        *dest = EEPROM_ReadDataByte((const uintptr_t)src);
    }
}

void eeprom_write_block(const void *buf, void *addr, size_t len) {
    uint8_t *      dest = (uint8_t *)addr;
    const uint8_t *src  = (const uint8_t *)buf;

    /* Check word alignment */
    if (len && (uintptr_t)dest % 2) {
        /* Write the unaligned first byte */
        EEPROM_WriteDataByte((uintptr_t)dest++, *src++);
        --len;
    }

    uint16_t value;
    bool     aligned = ((uintptr_t)src % 2 == 0);
    while (len > 1) {
        if (aligned) {
            value = *(uint16_t *)src;
        } else {
            value = *(uint8_t *)src | (*(uint8_t *)(src + 1) << 8);
        }
        EEPROM_WriteDataWord((uintptr_t)((uint16_t *)dest), value);
        dest += 2;
        src += 2;
        len -= 2;
    }

    if (len) {
        EEPROM_WriteDataByte((uintptr_t)dest, *src);
    }
}