1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
Copyright 2011 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "timer.h"
#include "matrix.h"
// Timer resolution check
#if (1000000/TIMER_RAW_FREQ > 20)
# error "Timer resolution(>20us) is not enough for HHKB matrix scan tweak on V-USB."
#endif
// matrix state buffer(1:on, 0:off)
static matrix_row_t *matrix;
static matrix_row_t *matrix_prev;
static matrix_row_t _matrix0[MATRIX_ROWS];
static matrix_row_t _matrix1[MATRIX_ROWS];
// Matrix I/O ports
//
// row: HC4051[A,B,C] selects scan row0-7
// col: LS145[A,B,C,D] selects scan col0-7 and enable(D)
// key: on: 0/off: 1
// prev: unknown: output previous key state(negated)?
#if defined(__AVR_AT90USB1286__)
// Ports for Teensy++
// row: PB0-2
// col: PB3-5,6
// key: PE6(pull-uped)
// prev: PE7
#define KEY_INIT() do { \
DDRB |= 0x7F; \
DDRE |= (1<<7); \
DDRE &= ~(1<<6); \
PORTE |= (1<<6); \
} while (0)
#define KEY_SELECT(ROW, COL) (PORTB = (PORTB & 0xC0) | \
(((COL) & 0x07)<<3) | \
((ROW) & 0x07))
#define KEY_ENABLE() (PORTB &= ~(1<<6))
#define KEY_UNABLE() (PORTB |= (1<<6))
#define KEY_STATE() (PINE & (1<<6))
#define KEY_PREV_ON() (PORTE |= (1<<7))
#define KEY_PREV_OFF() (PORTE &= ~(1<<7))
#define KEY_POWER_ON()
#define KEY_POWER_OFF()
#elif defined(__AVR_ATmega32U4__)
// Ports for my designed Alt Controller PCB
// row: PB0-2
// col: PB3-5,6
// key: PD7(pull-uped)
// prev: PB7
#define KEY_INIT() do { \
DDRB = 0xFF; \
PORTB = 0x00; \
DDRD &= ~0x80; \
PORTD |= 0x80; \
KEY_UNABLE(); \
KEY_PREV_OFF(); \
} while (0)
#define KEY_SELECT(ROW, COL) (PORTB = (PORTB & 0xC0) | \
(((COL) & 0x07)<<3) | \
((ROW) & 0x07))
#define KEY_ENABLE() (PORTB &= ~(1<<6))
#define KEY_UNABLE() (PORTB |= (1<<6))
#define KEY_STATE() (PIND & (1<<7))
#define KEY_PREV_ON() (PORTB |= (1<<7))
#define KEY_PREV_OFF() (PORTB &= ~(1<<7))
#define KEY_POWER_ON()
#define KEY_POWER_OFF()
#elif defined(__AVR_ATmega328P__)
// Ports for V-USB
// key: PB0(pull-uped)
// prev: PB1
// row: PB2-4
// col: PC0-2,3
// power: PB5(Low:on/Hi-z:off)
#define KEY_INIT() do { \
DDRB |= 0x3E; \
DDRB &= ~(1<<0); \
PORTB |= 1<<0; \
DDRC |= 0x0F; \
KEY_UNABLE(); \
KEY_PREV_OFF(); \
} while (0)
#define KEY_SELECT(ROW, COL) do { \
PORTB = (PORTB & 0xE3) | ((ROW) & 0x07)<<2; \
PORTC = (PORTC & 0xF8) | ((COL) & 0x07); \
} while (0)
#define KEY_ENABLE() (PORTC &= ~(1<<3))
#define KEY_UNABLE() (PORTC |= (1<<3))
#define KEY_STATE() (PINB & (1<<0))
#define KEY_PREV_ON() (PORTB |= (1<<1))
#define KEY_PREV_OFF() (PORTB &= ~(1<<1))
// Power supply switching
#define KEY_POWER_ON() do { \
KEY_INIT(); \
PORTB &= ~(1<<5); \
_delay_ms(1); \
} while (0)
#define KEY_POWER_OFF() do { \
DDRB &= ~0x3F; \
PORTB &= ~0x3F; \
DDRC &= ~0x0F; \
PORTC &= ~0x0F; \
} while (0)
#else
# error "define code for matrix scan"
#endif
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
#ifdef DEBUG
debug_enable = true;
debug_keyboard = true;
#endif
KEY_INIT();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix0[i] = 0x00;
for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix1[i] = 0x00;
matrix = _matrix0;
matrix_prev = _matrix1;
}
uint8_t matrix_scan(void)
{
uint8_t *tmp;
tmp = matrix_prev;
matrix_prev = matrix;
matrix = tmp;
KEY_POWER_ON();
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
KEY_SELECT(row, col);
_delay_us(40);
// Not sure this is needed. This just emulates HHKB controller's behaviour.
if (matrix_prev[row] & (1<<col)) {
KEY_PREV_ON();
}
_delay_us(7);
// NOTE: KEY_STATE is valid only in 20us after KEY_ENABLE.
// If V-USB interrupts in this section we could lose 40us or so
// and would read invalid value from KEY_STATE.
uint8_t last = TIMER_RAW;
KEY_ENABLE();
// Wait for KEY_STATE outputs its value.
// 1us was ok on one HHKB, but not worked on another.
// no wait doesn't work on Teensy++ with pro(1us works)
// no wait does work on tmk PCB(8MHz) with pro2
// 1us wait does work on both of above
// 10us wait does work on Teensy++ with pro
// 10us wait does work on 328p+iwrap with pro
// 10us wait doesn't work on tmk PCB(8MHz) with pro2(very lagged scan)
_delay_us(1);
// _delay_us(10);
if (KEY_STATE()) {
matrix[row] &= ~(1<<col);
} else {
matrix[row] |= (1<<col);
}
// Ignore if this code region execution time elapses more than 20us.
// MEMO: 20[us] * (TIMER_RAW_FREQ / 1000000)[count per us]
// MEMO: then change above using this rule: a/(b/c) = a*1/(b/c) = a*(c/b)
if (TIMER_DIFF_RAW(TIMER_RAW, last) > 20/(1000000/TIMER_RAW_FREQ)) {
matrix[row] = matrix_prev[row];
}
KEY_PREV_OFF();
KEY_UNABLE();
// NOTE: KEY_STATE keep its state in 20us after KEY_ENABLE.
// This takes 25us or more to make sure KEY_STATE returns to idle state.
_delay_us(150);
}
}
KEY_POWER_OFF();
return 1;
}
bool matrix_is_modified(void)
{
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
if (matrix[i] != matrix_prev[i])
return true;
}
return false;
}
inline
bool matrix_has_ghost(void)
{
return false;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & (1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 01234567\n");
for (uint8_t row = 0; row < matrix_rows(); row++) {
xprintf("%02X: %08b\n", row, bitrev(matrix_get_row(row)));
}
}
|