summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_STM/TARGET_STM32F4/spi_api.c
blob: 828e41426c367e54e3309243533a277bdbadd3e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/* mbed Microcontroller Library
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */
#include "mbed_assert.h"
#include "spi_api.h"

#if DEVICE_SPI

#include <math.h>
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"

static SPI_HandleTypeDef SpiHandle;

static void init_spi(spi_t *obj)
{
    SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);

    __HAL_SPI_DISABLE(&SpiHandle);

    SpiHandle.Init.Mode              = obj->mode;
    SpiHandle.Init.BaudRatePrescaler = obj->br_presc;
    SpiHandle.Init.Direction         = SPI_DIRECTION_2LINES;
    SpiHandle.Init.CLKPhase          = obj->cpha;
    SpiHandle.Init.CLKPolarity       = obj->cpol;
    SpiHandle.Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLED;
    SpiHandle.Init.CRCPolynomial     = 7;
    SpiHandle.Init.DataSize          = obj->bits;
    SpiHandle.Init.FirstBit          = SPI_FIRSTBIT_MSB;
    SpiHandle.Init.NSS               = obj->nss;
    SpiHandle.Init.TIMode            = SPI_TIMODE_DISABLED;

    HAL_SPI_Init(&SpiHandle);

    __HAL_SPI_ENABLE(&SpiHandle);
}

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
    // Determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);

    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
    MBED_ASSERT(obj->spi != (SPIName)NC);

    // Enable SPI clock
    if (obj->spi == SPI_1) {
        __SPI1_CLK_ENABLE();
    }

    if (obj->spi == SPI_2) {
        __SPI2_CLK_ENABLE();
    }

    if (obj->spi == SPI_3) {
        __SPI3_CLK_ENABLE();
    }

#if defined SPI4_BASE
    if (obj->spi == SPI_4) {
        __SPI4_CLK_ENABLE();
    }
#endif

#if defined SPI5_BASE
    if (obj->spi == SPI_5) {
        __SPI5_CLK_ENABLE();
    }
#endif

    // Configure the SPI pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);

    // Save new values
    obj->bits = SPI_DATASIZE_8BIT;
    obj->cpol = SPI_POLARITY_LOW;
    obj->cpha = SPI_PHASE_1EDGE;
    obj->br_presc = SPI_BAUDRATEPRESCALER_256;

    obj->pin_miso = miso;
    obj->pin_mosi = mosi;
    obj->pin_sclk = sclk;
    obj->pin_ssel = ssel;

    if (ssel == NC) { // SW NSS Master mode
        obj->mode = SPI_MODE_MASTER;
        obj->nss = SPI_NSS_SOFT;
    } else { // Slave
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
        obj->mode = SPI_MODE_SLAVE;
        obj->nss = SPI_NSS_HARD_INPUT;
    }

    init_spi(obj);
}

void spi_free(spi_t *obj)
{
    // Reset SPI and disable clock
    if (obj->spi == SPI_1) {
        __SPI1_FORCE_RESET();
        __SPI1_RELEASE_RESET();
        __SPI1_CLK_DISABLE();
    }

    if (obj->spi == SPI_2) {
        __SPI2_FORCE_RESET();
        __SPI2_RELEASE_RESET();
        __SPI2_CLK_DISABLE();
    }

    if (obj->spi == SPI_3) {
        __SPI3_FORCE_RESET();
        __SPI3_RELEASE_RESET();
        __SPI3_CLK_DISABLE();
    }

#if defined SPI4_BASE
    if (obj->spi == SPI_4) {
        __SPI4_FORCE_RESET();
        __SPI4_RELEASE_RESET();
        __SPI4_CLK_DISABLE();
    }
#endif

#if defined SPI5_BASE
    if (obj->spi == SPI_5) {
        __SPI5_FORCE_RESET();
        __SPI5_RELEASE_RESET();
        __SPI5_CLK_DISABLE();
    }
#endif

    // Configure GPIOs
    pin_function(obj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    pin_function(obj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    pin_function(obj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    pin_function(obj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}

void spi_format(spi_t *obj, int bits, int mode, int slave)
{
    // Save new values
    if (bits == 16) {
        obj->bits = SPI_DATASIZE_16BIT;
    } else {
        obj->bits = SPI_DATASIZE_8BIT;
    }

    switch (mode) {
        case 0:
            obj->cpol = SPI_POLARITY_LOW;
            obj->cpha = SPI_PHASE_1EDGE;
            break;
        case 1:
            obj->cpol = SPI_POLARITY_LOW;
            obj->cpha = SPI_PHASE_2EDGE;
            break;
        case 2:
            obj->cpol = SPI_POLARITY_HIGH;
            obj->cpha = SPI_PHASE_1EDGE;
            break;
        default:
            obj->cpol = SPI_POLARITY_HIGH;
            obj->cpha = SPI_PHASE_2EDGE;
            break;
    }

    if (slave == 0) {
        obj->mode = SPI_MODE_MASTER;
        obj->nss = SPI_NSS_SOFT;
    } else {
        obj->mode = SPI_MODE_SLAVE;
        obj->nss = SPI_NSS_HARD_INPUT;
    }

    init_spi(obj);
}

void spi_frequency(spi_t *obj, int hz)
{
#if defined(TARGET_STM32F401RE) || defined(TARGET_STM32F401VC) || defined(TARGET_F407VG)
    // Note: The frequencies are obtained with SPI1 clock = 84 MHz (APB2 clock)
    if (hz < 600000) {
        obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 330 kHz
    } else if ((hz >= 600000) && (hz < 1000000)) {
        obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 656 kHz
    } else if ((hz >= 1000000) && (hz < 2000000)) {
        obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 1.3 MHz
    } else if ((hz >= 2000000) && (hz < 5000000)) {
        obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 2.6 MHz
    } else if ((hz >= 5000000) && (hz < 10000000)) {
        obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 5.25 MHz
    } else if ((hz >= 10000000) && (hz < 21000000)) {
        obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 10.5 MHz
    } else if ((hz >= 21000000) && (hz < 42000000)) {
        obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 21 MHz
    } else { // >= 42000000
        obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 42 MHz
    }
#elif defined(TARGET_STM32F405RG)
    // Note: The frequencies are obtained with SPI1 clock = 48 MHz (APB2 clock)
    if (obj->spi == SPI_1) {
        if (hz < 375000) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 187.5 kHz
        } else if ((hz >= 375000) && (hz < 750000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 375 kHz
        } else if ((hz >= 750000) && (hz < 1500000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 0.75 MHz
        } else if ((hz >= 1500000) && (hz < 3000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 1.5 MHz
        } else if ((hz >= 3000000) && (hz < 6000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 3 MHz
        } else if ((hz >= 6000000) && (hz < 12000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 6 MHz
        } else if ((hz >= 12000000) && (hz < 24000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 12 MHz
        } else { // >= 24000000
            obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 24 MHz
        }
    // Note: The frequencies are obtained with SPI2/3 clock = 48 MHz (APB1 clock)
    } else if ((obj->spi == SPI_2) || (obj->spi == SPI_3)) {
        if (hz < 375000) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 187.5 kHz
        } else if ((hz >= 375000) && (hz < 750000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 375 kHz
        } else if ((hz >= 750000) && (hz < 1500000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 0.75 MHz
        } else if ((hz >= 1500000) && (hz < 3000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 1.5 MHz
        } else if ((hz >= 3000000) && (hz < 6000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 3 MHz
        } else if ((hz >= 6000000) && (hz < 12000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 6 MHz
        } else if ((hz >= 12000000) && (hz < 24000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 12 MHz
        } else { // >= 24000000
            obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 24 MHz
        }
    }
#elif defined(TARGET_STM32F411RE) || defined(TARGET_STM32F429ZI)
    // Values depend of PCLK2: 100 MHz
    if ((obj->spi == SPI_1) || (obj->spi == SPI_4) || (obj->spi == SPI_5)) {
        if (hz < 700000) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 391 kHz
        } else if ((hz >= 700000) && (hz < 1000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 781 kHz
        } else if ((hz >= 1000000) && (hz < 3000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_64;  // 1.56 MHz
        } else if ((hz >= 3000000) && (hz < 6000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_32;  // 3.13 MHz
        } else if ((hz >= 6000000) && (hz < 12000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_16;  // 6.25 MHz
        } else if ((hz >= 12000000) && (hz < 25000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_8;   // 12.5 MHz
        } else if ((hz >= 25000000) && (hz < 50000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_4;   // 25 MHz
        } else { // >= 50000000
            obj->br_presc = SPI_BAUDRATEPRESCALER_2;   // 50 MHz
        }
    }

    // Values depend of PCLK1: 50 MHz
    if ((obj->spi == SPI_2) || (obj->spi == SPI_3)) {
        if (hz < 400000) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 195 kHz
        } else if ((hz >= 400000) && (hz < 700000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 391 kHz
        } else if ((hz >= 700000) && (hz < 1000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_64;  // 781 MHz
        } else if ((hz >= 1000000) && (hz < 3000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_32;  // 1.56 MHz
        } else if ((hz >= 3000000) && (hz < 6000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_16;  // 3.13 MHz
        } else if ((hz >= 6000000) && (hz < 12000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_8;   // 6.25 MHz
        } else if ((hz >= 12000000) && (hz < 25000000)) {
            obj->br_presc = SPI_BAUDRATEPRESCALER_4;   // 12.5 MHz
        } else { // >= 25000000
            obj->br_presc = SPI_BAUDRATEPRESCALER_2;   // 25 MHz
        }
    }
#endif
    init_spi(obj);
}

static inline int ssp_readable(spi_t *obj)
{
    int status;
    SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
    // Check if data is received
    status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
    return status;
}

static inline int ssp_writeable(spi_t *obj)
{
    int status;
    SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
    // Check if data is transmitted
    status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
    return status;
}

static inline void ssp_write(spi_t *obj, int value)
{
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    while (!ssp_writeable(obj));
    spi->DR = (uint16_t)value;
}

static inline int ssp_read(spi_t *obj)
{
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    while (!ssp_readable(obj));
    return (int)spi->DR;
}

static inline int ssp_busy(spi_t *obj)
{
    int status;
    SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
    status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
    return status;
}

int spi_master_write(spi_t *obj, int value)
{
    ssp_write(obj, value);
    return ssp_read(obj);
}

int spi_slave_receive(spi_t *obj)
{
    return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
};

int spi_slave_read(spi_t *obj)
{
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    while (!ssp_readable(obj));
    return (int)spi->DR;
}

void spi_slave_write(spi_t *obj, int value)
{
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    while (!ssp_writeable(obj));
    spi->DR = (uint16_t)value;
}

int spi_busy(spi_t *obj)
{
    return ssp_busy(obj);
}

#endif