summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_NORDIC/TARGET_MCU_NRF51822/us_ticker.c
blob: 68fb5450151254ccff9e6657d08579d0b9211706 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* mbed Microcontroller Library
 * Copyright (c) 2013 Nordic Semiconductor
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <stddef.h>
#include <stdbool.h>
#include "us_ticker_api.h"
#include "cmsis.h"
#include "PeripheralNames.h"
#include "nrf_delay.h"

/*
 * Note: The micro-second timer API on the nRF51 platform is implemented using
 * the RTC counter run at 32kHz (sourced from an external oscillator). This is
 * a trade-off between precision and power. Running a normal 32-bit MCU counter
 * at high frequency causes the average power consumption to rise to a few
 * hundred micro-amps, which is prohibitive for typical low-power BLE
 * applications.
 * A 32kHz clock doesn't offer the precision needed for keeping u-second time,
 * but we're assuming that this will not be a problem for the average user.
 */

#define MAX_RTC_COUNTER_VAL     0x00FFFFFF               /**< Maximum value of the RTC counter. */
#define RTC_CLOCK_FREQ          (uint32_t)(32768)
#define RTC1_IRQ_PRI            3                        /**< Priority of the RTC1 interrupt (used
                                                          *  for checking for timeouts and executing
                                                          *  timeout handlers). This must be the same
                                                          *  as APP_IRQ_PRIORITY_LOW; taken from the
                                                          *  Nordic SDK. */
#define MAX_RTC_TASKS_DELAY     47                       /**< Maximum delay until an RTC task is executed. */

#define FUZZY_RTC_TICKS          2  /* RTC COMPARE occurs when a CC register is N and the RTC
                                     * COUNTER value transitions from N-1 to N. If we're trying to
                                     * setup a callback for a time which will arrive very shortly,
                                     * there are limits to how short the callback interval may be for us
                                     * to rely upon the RTC Compare trigger. If the COUNTER is N,
                                     * writing N+2 to a CC register is guaranteed to trigger a COMPARE
                                     * event at N+2. */

#define RTC_UNITS_TO_MICROSECONDS(RTC_UNITS) (((RTC_UNITS) * (uint64_t)1000000) / RTC_CLOCK_FREQ)
#define MICROSECONDS_TO_RTC_UNITS(MICROS)    ((((uint64_t)(MICROS) * RTC_CLOCK_FREQ) + 999999) / 1000000)

static bool              us_ticker_inited = false;
static volatile uint32_t overflowCount;                   /**< The number of times the 24-bit RTC counter has overflowed. */
static volatile bool     us_ticker_callbackPending = false;
static uint32_t          us_ticker_callbackTimestamp;

static inline void rtc1_enableCompareInterrupt(void)
{
    NRF_RTC1->EVTENCLR = RTC_EVTEN_COMPARE0_Msk;
    NRF_RTC1->INTENSET = RTC_INTENSET_COMPARE0_Msk;
}

static inline void rtc1_disableCompareInterrupt(void)
{
    NRF_RTC1->INTENCLR = RTC_INTENSET_COMPARE0_Msk;
    NRF_RTC1->EVTENCLR = RTC_EVTEN_COMPARE0_Msk;
}

static inline void rtc1_enableOverflowInterrupt(void)
{
    NRF_RTC1->EVTENCLR = RTC_EVTEN_OVRFLW_Msk;
    NRF_RTC1->INTENSET = RTC_INTENSET_OVRFLW_Msk;
}

static inline void rtc1_disableOverflowInterrupt(void)
{
    NRF_RTC1->INTENCLR = RTC_INTENSET_OVRFLW_Msk;
    NRF_RTC1->EVTENCLR = RTC_EVTEN_OVRFLW_Msk;
}

static inline void invokeCallback(void)
{
    us_ticker_callbackPending = false;
    rtc1_disableCompareInterrupt();
    us_ticker_irq_handler();
}

/**
 * @brief Function for starting the RTC1 timer. The RTC timer is expected to
 * keep running--some interrupts may be disabled temporarily.
 */
static void rtc1_start()
{
    NRF_RTC1->PRESCALER = 0; /* for no pre-scaling. */

    rtc1_enableOverflowInterrupt();

    NVIC_SetPriority(RTC1_IRQn, RTC1_IRQ_PRI);
    NVIC_ClearPendingIRQ(RTC1_IRQn);
    NVIC_EnableIRQ(RTC1_IRQn);

    NRF_RTC1->TASKS_START = 1;
    nrf_delay_us(MAX_RTC_TASKS_DELAY);
}

/**
 * @brief Function for stopping the RTC1 timer. We don't expect to call this.
 */
void rtc1_stop(void)
{
    NVIC_DisableIRQ(RTC1_IRQn);
    rtc1_disableCompareInterrupt();
    rtc1_disableOverflowInterrupt();

    NRF_RTC1->TASKS_STOP = 1;
    nrf_delay_us(MAX_RTC_TASKS_DELAY);

    NRF_RTC1->TASKS_CLEAR = 1;
    nrf_delay_us(MAX_RTC_TASKS_DELAY);
}

/**
 * @brief Function for returning the current value of the RTC1 counter.
 *
 * @return Current RTC1 counter as a 64-bit value with 56-bit precision (even
 *         though the underlying counter is 24-bit)
 */
static inline uint64_t rtc1_getCounter64(void)
{
    if (NRF_RTC1->EVENTS_OVRFLW) {
        overflowCount++;
        NRF_RTC1->EVENTS_OVRFLW = 0;
        NRF_RTC1->EVTENCLR      = RTC_EVTEN_OVRFLW_Msk;
    }
    return ((uint64_t)overflowCount << 24) | NRF_RTC1->COUNTER;
}

/**
 * @brief Function for returning the current value of the RTC1 counter.
 *
 * @return Current RTC1 counter as a 32-bit value (even though the underlying counter is 24-bit)
 */
static inline uint32_t rtc1_getCounter(void)
{
    return rtc1_getCounter64();
}

/**
 * @brief Function for handling the RTC1 interrupt.
 *
 * @details Checks for timeouts, and executes timeout handlers for expired timers.
 */
void RTC1_IRQHandler(void)
{
    if (NRF_RTC1->EVENTS_OVRFLW) {
        overflowCount++;
        NRF_RTC1->EVENTS_OVRFLW = 0;
        NRF_RTC1->EVTENCLR      = RTC_EVTEN_OVRFLW_Msk;
    }
    if (NRF_RTC1->EVENTS_COMPARE[0] && us_ticker_callbackPending && ((int)(us_ticker_callbackTimestamp - rtc1_getCounter()) <= 0)) {
        NRF_RTC1->EVENTS_COMPARE[0] = 0;
        NRF_RTC1->EVTENCLR          = RTC_EVTEN_COMPARE0_Msk;
        invokeCallback();
    }
}

void us_ticker_init(void)
{
    if (us_ticker_inited) {
        return;
    }

    rtc1_start();
    us_ticker_inited = true;
}

uint32_t us_ticker_read()
{
    if (!us_ticker_inited) {
        us_ticker_init();
    }

    /* Return a pseudo microsecond counter value. This is only as precise as the
     * 32khz low-freq clock source, but could be adequate.*/
    return RTC_UNITS_TO_MICROSECONDS(rtc1_getCounter64());
}

/**
 * Setup the us_ticker callback interrupt to go at the given timestamp.
 *
 * @Note: Only one callback is pending at any time.
 *
 * @Note: If a callback is pending, and this function is called again, the new
 * callback-time overrides the existing callback setting. It is the caller's
 * responsibility to ensure that this function is called to setup a callback for
 * the earliest timeout.
 *
 * @Note: If this function is used to setup an interrupt which is immediately
 * pending--such as for 'now' or a time in the past,--then the callback is
 * invoked a few ticks later.
 */
void us_ticker_set_interrupt(timestamp_t timestamp)
{
    if (!us_ticker_inited) {
        us_ticker_init();
    }

    /*
     * The argument to this function is a 32-bit microsecond timestamp for when
     * a callback should be invoked. On the nRF51, we use an RTC timer running
     * at 32kHz to implement a low-power us-ticker. This results in a problem
     * based on the fact that 1000000 is not a multiple of 32768.
     *
     * Going from a micro-second based timestamp to a 32kHz based RTC-time is a
     * linear mapping; but this mapping doesn't preserve wraparounds--i.e. when
     * the 32-bit micro-second timestamp wraps around unfortunately the
     * underlying RTC counter doesn't. The result is that timestamp expiry
     * checks on micro-second timestamps don't yield the same result when
     * applied on the corresponding RTC timestamp values.
     *
     * One solution is to translate the incoming 32-bit timestamp into a virtual
     * 64-bit timestamp based on the knowledge of system-uptime, and then use
     * this wraparound-free 64-bit value to do a linear mapping to RTC time.
     * System uptime on an nRF is maintained using the 24-bit RTC counter. We
     * track the overflow count to extend the 24-bit hardware counter by an
     * additional 32 bits. RTC_UNITS_TO_MICROSECONDS() converts this into
     * microsecond units (in 64-bits).
     */
    const uint64_t currentTime64 = RTC_UNITS_TO_MICROSECONDS(rtc1_getCounter64());
    uint64_t timestamp64 = (currentTime64 & ~(uint64_t)0xFFFFFFFFULL) + timestamp;
    if (((uint32_t)currentTime64 > 0x80000000) && (timestamp < 0x80000000)) {
        timestamp64 += (uint64_t)0x100000000ULL;
    }
    uint32_t newCallbackTime = MICROSECONDS_TO_RTC_UNITS(timestamp64);

    /* Check for repeat setup of an existing callback. This is actually not
     * important; the following code should work even without this check. */
    if (us_ticker_callbackPending && (newCallbackTime == us_ticker_callbackTimestamp)) {
        return;
    }

    /* Check for callbacks which are immediately (or will *very* shortly become) pending.
     * Even if they are immediately pending, they are scheduled to trigger a few
     * ticks later. This keeps things simple by invoking the callback from an
     * independent interrupt context. */
    if ((int)(newCallbackTime - rtc1_getCounter()) <= (int)FUZZY_RTC_TICKS) {
        newCallbackTime = rtc1_getCounter() + FUZZY_RTC_TICKS;
    }

    NRF_RTC1->CC[0]             = newCallbackTime & MAX_RTC_COUNTER_VAL;
    us_ticker_callbackTimestamp = newCallbackTime;
    if (!us_ticker_callbackPending) {
        us_ticker_callbackPending = true;
        rtc1_enableCompareInterrupt();
    }
}

void us_ticker_disable_interrupt(void)
{
    if (us_ticker_callbackPending) {
        rtc1_disableCompareInterrupt();
        us_ticker_callbackPending = false;
    }
}

void us_ticker_clear_interrupt(void)
{
    NRF_RTC1->EVENTS_OVRFLW     = 0;
    NRF_RTC1->EVENTS_COMPARE[0] = 0;
}