summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_Freescale/TARGET_KLXX/TARGET_KL25Z/spi_api.c
blob: e9f13ecbf1681a6f77669e2177d97bb51c6b8809 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "spi_api.h"

#include <math.h>

#include "cmsis.h"
#include "pinmap.h"
#include "clk_freqs.h"
#include "PeripheralPins.h"

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
    // determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    obj->spi = (SPI_Type*)pinmap_merge(spi_data, spi_cntl);
    MBED_ASSERT((int)obj->spi != NC);

    // enable power and clocking
    switch ((int)obj->spi) {
        case SPI_0: SIM->SCGC5 |= 1 << 11; SIM->SCGC4 |= 1 << 22; break;
        case SPI_1: SIM->SCGC5 |= 1 << 13; SIM->SCGC4 |= 1 << 23; break;
    }

    // set default format and frequency
    if (ssel == NC) {
        spi_format(obj, 8, 0, 0);  // 8 bits, mode 0, master
    } else {
        spi_format(obj, 8, 0, 1);  // 8 bits, mode 0, slave
    }
    spi_frequency(obj, 1000000);

    // enable SPI
    obj->spi->C1 |= SPI_C1_SPE_MASK;

    // pin out the spi pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);
    if (ssel != NC) {
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
    }
}

void spi_free(spi_t *obj) {
    // [TODO]
}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
    MBED_ASSERT(bits == 8);
    MBED_ASSERT((mode >= 0) && (mode <= 3));

    uint8_t polarity = (mode & 0x2) ? 1 : 0;
    uint8_t phase = (mode & 0x1) ? 1 : 0;
    uint8_t c1_data = ((!slave) << 4) | (polarity << 3) | (phase << 2);

    // clear MSTR, CPOL and CPHA bits
    obj->spi->C1 &= ~(0x7 << 2);

    // write new value
    obj->spi->C1 |= c1_data;
}

void spi_frequency(spi_t *obj, int hz) {
    uint32_t error = 0;
    uint32_t p_error = 0xffffffff;
    uint32_t ref = 0;
    uint8_t  spr = 0;
    uint8_t  ref_spr = 0;
    uint8_t  ref_prescaler = 0;

    // bus clk
    uint32_t PCLK = bus_frequency();
    uint8_t prescaler = 1;
    uint8_t divisor = 2;

    for (prescaler = 1; prescaler <= 8; prescaler++) {
        divisor = 2;
        for (spr = 0; spr <= 8; spr++, divisor *= 2) {
            ref = PCLK / (prescaler*divisor);
            if (ref > (uint32_t)hz)
                continue;
            error = hz - ref;
            if (error < p_error) {
                ref_spr = spr;
                ref_prescaler = prescaler - 1;
                p_error = error;
            }
        }
    }

    // set SPPR and SPR
    obj->spi->BR = ((ref_prescaler & 0x7) << 4) | (ref_spr & 0xf);
}

static inline int spi_writeable(spi_t * obj) {
    return (obj->spi->S & SPI_S_SPTEF_MASK) ? 1 : 0;
}

static inline int spi_readable(spi_t * obj) {
    return (obj->spi->S & SPI_S_SPRF_MASK) ? 1 : 0;
}

int spi_master_write(spi_t *obj, int value) {
    // wait tx buffer empty
    while(!spi_writeable(obj));
    obj->spi->D = (value & 0xff);

    // wait rx buffer full
    while (!spi_readable(obj));
    return obj->spi->D & 0xff;
}

int spi_slave_receive(spi_t *obj) {
    return spi_readable(obj);
}

int spi_slave_read(spi_t *obj) {
    return obj->spi->D;
}

void spi_slave_write(spi_t *obj, int value) {
    while (!spi_writeable(obj));
    obj->spi->D = value;
}