summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/cmsis/TARGET_STM/TARGET_STM32F3XX/stm32f30x_spi.c
blob: 73c000a65873dc68df75667e09a9fbca4d1d3052 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
/**
  ******************************************************************************
  * @file    stm32f30x_spi.c
  * @author  MCD Application Team
  * @version V1.1.0
  * @date    27-February-2014
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Serial peripheral interface (SPI):
  *           + Initialization and Configuration
  *           + Data transfers functions
  *           + Hardware CRC Calculation
  *           + DMA transfers management
  *           + Interrupts and flags management
  *
  *  @verbatim
  
  
 ===============================================================================
                      ##### How to use this driver #####
 ===============================================================================
    [..]
        (#) Enable peripheral clock using RCC_APBPeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE)
            function for SPI1 or using RCC_APBPeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE)
            function for SPI2.
        (#) Enable SCK, MOSI, MISO and NSS GPIO clocks using RCC_AHBPeriphClockCmd()
            function. 
        (#) Peripherals alternate function: 
            (++) Connect the pin to the desired peripherals' Alternate 
                 Function (AF) using GPIO_PinAFConfig() function.
            (++) Configure the desired pin in alternate function by:
                 GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF.
            (++) Select the type, pull-up/pull-down and output speed via 
                 GPIO_PuPd, GPIO_OType and GPIO_Speed members.
            (++) Call GPIO_Init() function.
        (#) Program the Polarity, Phase, First Data, Baud Rate Prescaler, Slave 
            Management, Peripheral Mode and CRC Polynomial values using the SPI_Init()
            function in SPI mode. In I2S mode, program the Mode, Standard, Data Format,
            MCLK Output, Audio frequency and Polarity using I2S_Init() function.
        (#) Configure the FIFO threshold using SPI_RxFIFOThresholdConfig() to select 
            at which threshold the RXNE event is generated.     
        (#) Enable the NVIC and the corresponding interrupt using the function 
            SPI_I2S_ITConfig() if you need to use interrupt mode. 
        (#) When using the DMA mode 
            (++) Configure the DMA using DMA_Init() function.
            (++) Active the needed channel Request using SPI_I2S_DMACmd() function.
        (#) Enable the SPI using the SPI_Cmd() function or enable the I2S using
            I2S_Cmd().
        (#) Enable the DMA using the DMA_Cmd() function when using DMA mode. 
        (#) Optionally you can enable/configure the following parameters without
            re-initialization (i.e there is no need to call again SPI_Init() function):
            (++) When bidirectional mode (SPI_Direction_1Line_Rx or SPI_Direction_1Line_Tx)
                 is programmed as Data direction parameter using the SPI_Init() function
                 it can be possible to switch between SPI_Direction_Tx or SPI_Direction_Rx
                 using the SPI_BiDirectionalLineConfig() function.
            (++) When SPI_NSS_Soft is selected as Slave Select Management parameter 
                 using the SPI_Init() function it can be possible to manage the 
                 NSS internal signal using the SPI_NSSInternalSoftwareConfig() function.
            (++) Reconfigure the data size using the SPI_DataSizeConfig() function.  
            (++) Enable or disable the SS output using the SPI_SSOutputCmd() function.
        (#) To use the CRC Hardware calculation feature refer to the Peripheral 
            CRC hardware Calculation subsection.
    [..] It is possible to use SPI in I2S full duplex mode, in this case, each SPI 
         peripheral is able to manage sending and receiving data simultaneously
         using two data lines. Each SPI peripheral has an extended block called I2Sxext
         (ie. I2S2ext for SPI2 and I2S3ext for SPI3).
         The extension block is not a full SPI IP, it is used only as I2S slave to
         implement full duplex mode. The extension block uses the same clock sources
         as its master.          
         To configure I2S full duplex you have to:
        (#) Configure SPIx in I2S mode (I2S_Init() function) as described above. 
        (#) Call the I2S_FullDuplexConfig() function using the same strucutre passed to  
            I2S_Init() function.
        (#) Call I2S_Cmd() for SPIx then for its extended block.
        (#) Configure interrupts or DMA requests and to get/clear flag status, 
            use I2Sxext instance for the extension block.
        [..] Functions that can be called with I2Sxext instances are:
             I2S_Cmd(), I2S_FullDuplexConfig(), SPI_I2S_ReceiveData16(), SPI_I2S_SendData16(), 
             SPI_I2S_DMACmd(), SPI_I2S_ITConfig(), SPI_I2S_GetFlagStatus(), SPI_I2S_ClearFlag(),
             SPI_I2S_GetITStatus() and SPI_I2S_ClearITPendingBit().
        [..] Example: To use SPI3 in Full duplex mode (SPI3 is Master Tx, I2S3ext is Slave Rx):
        [..] RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);   
             I2S_StructInit(&I2SInitStruct);
             I2SInitStruct.Mode = I2S_Mode_MasterTx;     
             I2S_Init(SPI3, &I2SInitStruct);
             I2S_FullDuplexConfig(SPI3ext, &I2SInitStruct)
             I2S_Cmd(SPI3, ENABLE);
             I2S_Cmd(SPI3ext, ENABLE);
             ...
             while (SPI_I2S_GetFlagStatus(SPI2, SPI_FLAG_TXE) == RESET)
             {}
             SPI_I2S_SendData16(SPI3, txdata[i]);
             ...  
             while (SPI_I2S_GetFlagStatus(I2S3ext, SPI_FLAG_RXNE) == RESET)
             {}
             rxdata[i] = SPI_I2S_ReceiveData16(I2S3ext);
             ...          
    [..]
    (@) In SPI mode: To use the SPI TI mode, call the function SPI_TIModeCmd() 
        just after calling the function SPI_Init().  
              
    @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f30x_spi.h"
#include "stm32f30x_rcc.h"

/** @addtogroup STM32F30x_StdPeriph_Driver
  * @{
  */

/** @defgroup SPI
  * @brief SPI driver modules
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* SPI registers Masks */
#define CR1_CLEAR_MASK       ((uint16_t)0x3040)
#define CR2_LDMA_MASK        ((uint16_t)0x9FFF)

#define I2SCFGR_CLEAR_MASK   ((uint16_t)0xF040)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup SPI_Private_Functions
  * @{
  */

/** @defgroup SPI_Group1 Initialization and Configuration functions
 *  @brief   Initialization and Configuration functions 
 *
@verbatim   
 ===============================================================================
           ##### Initialization and Configuration functions #####
 ===============================================================================  
    [..] This section provides a set of functions allowing to initialize the SPI Direction,
         SPI Mode, SPI Data Size, SPI Polarity, SPI Phase, SPI NSS Management, SPI Baud
         Rate Prescaler, SPI First Bit and SPI CRC Polynomial.
    [..] The SPI_Init() function follows the SPI configuration procedures for Master mode
         and Slave mode (details for these procedures are available in reference manual).
    [..] When the Software NSS management (SPI_InitStruct->SPI_NSS = SPI_NSS_Soft) is selected,
         use the following function to manage the NSS bit:
         void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft);
    [..] In Master mode, when the Hardware NSS management (SPI_InitStruct->SPI_NSS = SPI_NSS_Hard)
         is selected, use the follwoing function to enable the NSS output feature.
         void SPI_SSOutputCmd(SPI_TypeDef* SPIx, FunctionalState NewState);
    [..] The NSS pulse mode can be managed by the SPI TI mode when enabling it using the 
         following function: void SPI_TIModeCmd(SPI_TypeDef* SPIx, FunctionalState NewState);
         And it can be managed by software in the SPI Motorola mode using this function: 
         void SPI_NSSPulseModeCmd(SPI_TypeDef* SPIx, FunctionalState NewState);
    [..] This section provides also functions to initialize the I2S Mode, Standard, 
         Data Format, MCLK Output, Audio frequency and Polarity.
    [..] The I2S_Init() function follows the I2S configuration procedures for Master mode
         and Slave mode.
  
@endverbatim
  * @{
  */

/**
  * @brief  Deinitializes the SPIx peripheral registers to their default
  *         reset values.
  * @param  SPIx: To select the SPIx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode.
  * @retval None
  */
void SPI_I2S_DeInit(SPI_TypeDef* SPIx)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));

  if (SPIx == SPI1)
  {
    /* Enable SPI1 reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);
    /* Release SPI1 from reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);
  }
  else if (SPIx == SPI2)
  {
    /* Enable SPI2 reset state */
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, ENABLE);
    /* Release SPI2 from reset state */
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, DISABLE);
  }
  else
  {
    if (SPIx == SPI3)
    {
      /* Enable SPI3 reset state */
      RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, ENABLE);
      /* Release SPI3 from reset state */
      RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, DISABLE);
    }
  }
}

/**
  * @brief  Fills each SPI_InitStruct member with its default value.
  * @param  SPI_InitStruct: pointer to a SPI_InitTypeDef structure which will be initialized.
  * @retval None
  */
void SPI_StructInit(SPI_InitTypeDef* SPI_InitStruct)
{
/*--------------- Reset SPI init structure parameters values -----------------*/
  /* Initialize the SPI_Direction member */
  SPI_InitStruct->SPI_Direction = SPI_Direction_2Lines_FullDuplex;
  /* Initialize the SPI_Mode member */
  SPI_InitStruct->SPI_Mode = SPI_Mode_Slave;
  /* Initialize the SPI_DataSize member */
  SPI_InitStruct->SPI_DataSize = SPI_DataSize_8b;
  /* Initialize the SPI_CPOL member */
  SPI_InitStruct->SPI_CPOL = SPI_CPOL_Low;
  /* Initialize the SPI_CPHA member */
  SPI_InitStruct->SPI_CPHA = SPI_CPHA_1Edge;
  /* Initialize the SPI_NSS member */
  SPI_InitStruct->SPI_NSS = SPI_NSS_Hard;
  /* Initialize the SPI_BaudRatePrescaler member */
  SPI_InitStruct->SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
  /* Initialize the SPI_FirstBit member */
  SPI_InitStruct->SPI_FirstBit = SPI_FirstBit_MSB;
  /* Initialize the SPI_CRCPolynomial member */
  SPI_InitStruct->SPI_CRCPolynomial = 7;
}

/**
  * @brief  Initializes the SPIx peripheral according to the specified 
  *         parameters in the SPI_InitStruct.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
  *         contains the configuration information for the specified SPI peripheral.
  * @retval None
  */
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
{
  uint16_t tmpreg = 0;

  /* check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));

  /* Check the SPI parameters */
  assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
  assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
  assert_param(IS_SPI_DATA_SIZE(SPI_InitStruct->SPI_DataSize));
  assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
  assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
  assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
  assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
  assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
  assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));

  /* Configuring the SPI in master mode */
  if(SPI_InitStruct->SPI_Mode == SPI_Mode_Master)
  {
/*---------------------------- SPIx CR1 Configuration ------------------------*/
    /* Get the SPIx CR1 value */
    tmpreg = SPIx->CR1;
    /* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits */
    tmpreg &= CR1_CLEAR_MASK;
    /* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
       master/slave mode, CPOL and CPHA */
    /* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value */
    /* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values */
    /* Set LSBFirst bit according to SPI_FirstBit value */
    /* Set BR bits according to SPI_BaudRatePrescaler value */
    /* Set CPOL bit according to SPI_CPOL value */
    /* Set CPHA bit according to SPI_CPHA value */
    tmpreg |= (uint16_t)((uint16_t)(SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode) |
                         (uint16_t)((uint16_t)(SPI_InitStruct->SPI_CPOL | SPI_InitStruct->SPI_CPHA) |
                         (uint16_t)((uint16_t)(SPI_InitStruct->SPI_NSS | SPI_InitStruct->SPI_BaudRatePrescaler) | 
                         SPI_InitStruct->SPI_FirstBit)));
    /* Write to SPIx CR1 */
    SPIx->CR1 = tmpreg;
    /*-------------------------Data Size Configuration -----------------------*/
    /* Get the SPIx CR2 value */
    tmpreg = SPIx->CR2;
    /* Clear DS[3:0] bits */
    tmpreg &= (uint16_t)~SPI_CR2_DS;
    /* Configure SPIx: Data Size */
    tmpreg |= (uint16_t)(SPI_InitStruct->SPI_DataSize);
    /* Write to SPIx CR2 */
    SPIx->CR2 = tmpreg;
  }
  /* Configuring the SPI in slave mode */
  else
  {
/*---------------------------- Data size Configuration -----------------------*/
    /* Get the SPIx CR2 value */
    tmpreg = SPIx->CR2;
    /* Clear DS[3:0] bits */
    tmpreg &= (uint16_t)~SPI_CR2_DS;
    /* Configure SPIx: Data Size */
    tmpreg |= (uint16_t)(SPI_InitStruct->SPI_DataSize);
    /* Write to SPIx CR2 */
    SPIx->CR2 = tmpreg;
/*---------------------------- SPIx CR1 Configuration ------------------------*/
    /* Get the SPIx CR1 value */
    tmpreg = SPIx->CR1;
    /* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits */
    tmpreg &= CR1_CLEAR_MASK;
    /* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
       master/salve mode, CPOL and CPHA */
    /* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value */
    /* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values */
    /* Set LSBFirst bit according to SPI_FirstBit value */
    /* Set BR bits according to SPI_BaudRatePrescaler value */
    /* Set CPOL bit according to SPI_CPOL value */
    /* Set CPHA bit according to SPI_CPHA value */
    tmpreg |= (uint16_t)((uint16_t)(SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode) | 
                         (uint16_t)((uint16_t)(SPI_InitStruct->SPI_CPOL | SPI_InitStruct->SPI_CPHA) | 
                         (uint16_t)((uint16_t)(SPI_InitStruct->SPI_NSS | SPI_InitStruct->SPI_BaudRatePrescaler) | 
                         SPI_InitStruct->SPI_FirstBit)));

    /* Write to SPIx CR1 */
    SPIx->CR1 = tmpreg;
  }

  /* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
  SPIx->I2SCFGR &= (uint16_t)~((uint16_t)SPI_I2SCFGR_I2SMOD);

/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
  /* Write to SPIx CRCPOLY */
  SPIx->CRCPR = SPI_InitStruct->SPI_CRCPolynomial;
}

/**
  * @brief  Fills each I2S_InitStruct member with its default value.
  * @param  I2S_InitStruct : pointer to a I2S_InitTypeDef structure which will be initialized.
  * @retval None
  */
void I2S_StructInit(I2S_InitTypeDef* I2S_InitStruct)
{
/*--------------- Reset I2S init structure parameters values -----------------*/
  /* Initialize the I2S_Mode member */
  I2S_InitStruct->I2S_Mode = I2S_Mode_SlaveTx;

  /* Initialize the I2S_Standard member */
  I2S_InitStruct->I2S_Standard = I2S_Standard_Phillips;

  /* Initialize the I2S_DataFormat member */
  I2S_InitStruct->I2S_DataFormat = I2S_DataFormat_16b;

  /* Initialize the I2S_MCLKOutput member */
  I2S_InitStruct->I2S_MCLKOutput = I2S_MCLKOutput_Disable;

  /* Initialize the I2S_AudioFreq member */
  I2S_InitStruct->I2S_AudioFreq = I2S_AudioFreq_Default;

  /* Initialize the I2S_CPOL member */
  I2S_InitStruct->I2S_CPOL = I2S_CPOL_Low;
}

/**
  * @brief  Initializes the SPIx peripheral according to the specified 
  *   parameters in the I2S_InitStruct.
  * @param  SPIx:To select the SPIx peripheral, where x can be: 2 or 3 
  *         in I2S mode. 
  * @param  I2S_InitStruct: pointer to an I2S_InitTypeDef structure that
  *   contains the configuration information for the specified SPI peripheral
  *   configured in I2S mode.
  * @note
  *  The function calculates the optimal prescaler needed to obtain the most 
  *  accurate audio frequency (depending on the I2S clock source, the PLL values 
  *  and the product configuration). But in case the prescaler value is greater 
  *  than 511, the default value (0x02) will be configured instead.     
  * @retval None
  */
void I2S_Init(SPI_TypeDef* SPIx, I2S_InitTypeDef* I2S_InitStruct)
{
  uint16_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
  uint32_t tmp = 0;
  RCC_ClocksTypeDef RCC_Clocks;
  uint32_t sourceclock = 0;

  /* Check the I2S parameters */
  assert_param(IS_SPI_23_PERIPH(SPIx));
  assert_param(IS_I2S_MODE(I2S_InitStruct->I2S_Mode));
  assert_param(IS_I2S_STANDARD(I2S_InitStruct->I2S_Standard));
  assert_param(IS_I2S_DATA_FORMAT(I2S_InitStruct->I2S_DataFormat));
  assert_param(IS_I2S_MCLK_OUTPUT(I2S_InitStruct->I2S_MCLKOutput));
  assert_param(IS_I2S_AUDIO_FREQ(I2S_InitStruct->I2S_AudioFreq));
  assert_param(IS_I2S_CPOL(I2S_InitStruct->I2S_CPOL));  

/*----------------------- SPIx I2SCFGR & I2SPR Configuration -----------------*/
  /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
  SPIx->I2SCFGR &= I2SCFGR_CLEAR_MASK; 
  SPIx->I2SPR = 0x0002;

  /* Get the I2SCFGR register value */
  tmpreg = SPIx->I2SCFGR;

  /* If the default value has to be written, reinitialize i2sdiv and i2sodd*/
  if(I2S_InitStruct->I2S_AudioFreq == I2S_AudioFreq_Default)
  {
    i2sodd = (uint16_t)0;
    i2sdiv = (uint16_t)2;   
  }
  /* If the requested audio frequency is not the default, compute the prescaler */
  else
  {
    /* Check the frame length (For the Prescaler computing) */
    if(I2S_InitStruct->I2S_DataFormat == I2S_DataFormat_16b)
    {
      /* Packet length is 16 bits */
      packetlength = 1;
    }
    else
    {
      /* Packet length is 32 bits */
      packetlength = 2;
    }

    /* I2S Clock source is System clock: Get System Clock frequency */
    RCC_GetClocksFreq(&RCC_Clocks);      

    /* Get the source clock value: based on System Clock value */
    sourceclock = RCC_Clocks.SYSCLK_Frequency;    

    /* Compute the Real divider depending on the MCLK output state with a floating point */
    if(I2S_InitStruct->I2S_MCLKOutput == I2S_MCLKOutput_Enable)
    {
      /* MCLK output is enabled */
      tmp = (uint16_t)(((((sourceclock / 256) * 10) / I2S_InitStruct->I2S_AudioFreq)) + 5);
    }
    else
    {
      /* MCLK output is disabled */
      tmp = (uint16_t)(((((sourceclock / (32 * packetlength)) *10 ) / I2S_InitStruct->I2S_AudioFreq)) + 5);
    }
    
    /* Remove the floating point */
    tmp = tmp / 10;

    /* Check the parity of the divider */
    i2sodd = (uint16_t)(tmp & (uint16_t)0x0001);

    /* Compute the i2sdiv prescaler */
    i2sdiv = (uint16_t)((tmp - i2sodd) / 2);

    /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
    i2sodd = (uint16_t) (i2sodd << 8);
  }

  /* Test if the divider is 1 or 0 or greater than 0xFF */
  if ((i2sdiv < 2) || (i2sdiv > 0xFF))
  {
    /* Set the default values */
    i2sdiv = 2;
    i2sodd = 0;
  }

  /* Write to SPIx I2SPR register the computed value */
  SPIx->I2SPR = (uint16_t)(i2sdiv | (uint16_t)(i2sodd | (uint16_t)I2S_InitStruct->I2S_MCLKOutput));

  /* Configure the I2S with the SPI_InitStruct values */
  tmpreg |= (uint16_t)((uint16_t)(SPI_I2SCFGR_I2SMOD | I2S_InitStruct->I2S_Mode) | \
                       (uint16_t)((uint16_t)((uint16_t)(I2S_InitStruct->I2S_Standard |I2S_InitStruct->I2S_DataFormat) |\
                       I2S_InitStruct->I2S_CPOL)));

  /* Write to SPIx I2SCFGR */
  SPIx->I2SCFGR = tmpreg;
}

/**
  * @brief  Enables or disables the specified SPI peripheral.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  NewState: new state of the SPIx peripheral. 
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected SPI peripheral */
    SPIx->CR1 |= SPI_CR1_SPE;
  }
  else
  {
    /* Disable the selected SPI peripheral */
    SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_SPE);
  }
}

/**
  * @brief  Enables or disables the TI Mode.
  * @note    This function can be called only after the SPI_Init() function has 
  *          been called. 
  * @note    When TI mode is selected, the control bits SSM, SSI, CPOL and CPHA 
  *          are not taken into consideration and are configured by hardware 
  *          respectively to the TI mode requirements.  
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.  
  * @param  NewState: new state of the selected SPI TI communication mode.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_TIModeCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the TI mode for the selected SPI peripheral */
    SPIx->CR2 |= SPI_CR2_FRF;
  }
  else
  {
    /* Disable the TI mode for the selected SPI peripheral */
    SPIx->CR2 &= (uint16_t)~((uint16_t)SPI_CR2_FRF);
  }
}

/**
  * @brief  Enables or disables the specified SPI peripheral (in I2S mode).
  * @param  SPIx:To select the SPIx peripheral, where x can be: 2 or 3 in 
  *         I2S mode or I2Sxext for I2S full duplex mode. 
  * @param  NewState: new state of the SPIx peripheral. 
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void I2S_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_SPI_23_PERIPH_EXT(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected SPI peripheral in I2S mode */
    SPIx->I2SCFGR |= SPI_I2SCFGR_I2SE;
  }
  else
  {
    /* Disable the selected SPI peripheral in I2S mode */
    SPIx->I2SCFGR &= (uint16_t)~((uint16_t)SPI_I2SCFGR_I2SE);
  }
}

/**
  * @brief  Configures the data size for the selected SPI.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral. 
  * @param  SPI_DataSize: specifies the SPI data size.
  *   For the SPIx peripheral this parameter can be one of the following values:
  *     @arg SPI_DataSize_4b: Set data size to 4 bits
  *     @arg SPI_DataSize_5b: Set data size to 5 bits
  *     @arg SPI_DataSize_6b: Set data size to 6 bits
  *     @arg SPI_DataSize_7b: Set data size to 7 bits
  *     @arg SPI_DataSize_8b: Set data size to 8 bits
  *     @arg SPI_DataSize_9b: Set data size to 9 bits
  *     @arg SPI_DataSize_10b: Set data size to 10 bits
  *     @arg SPI_DataSize_11b: Set data size to 11 bits
  *     @arg SPI_DataSize_12b: Set data size to 12 bits
  *     @arg SPI_DataSize_13b: Set data size to 13 bits
  *     @arg SPI_DataSize_14b: Set data size to 14 bits
  *     @arg SPI_DataSize_15b: Set data size to 15 bits
  *     @arg SPI_DataSize_16b: Set data size to 16 bits
  * @retval None
  */
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, uint16_t SPI_DataSize)
{
  uint16_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_DATA_SIZE(SPI_DataSize));
  /* Read the CR2 register */
  tmpreg = SPIx->CR2;
  /* Clear DS[3:0] bits */
  tmpreg &= (uint16_t)~SPI_CR2_DS;
  /* Set new DS[3:0] bits value */
  tmpreg |= SPI_DataSize;
  SPIx->CR2 = tmpreg;
}

/**
  * @brief  Configures the FIFO reception threshold for the selected SPI.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral. 
  * @param  SPI_RxFIFOThreshold: specifies the FIFO reception threshold.
  *   This parameter can be one of the following values:
  *     @arg SPI_RxFIFOThreshold_HF: RXNE event is generated if the FIFO 
  *          level is greater or equal to 1/2. 
  *     @arg SPI_RxFIFOThreshold_QF: RXNE event is generated if the FIFO 
  *          level is greater or equal to 1/4. 
  * @retval None
  */
void SPI_RxFIFOThresholdConfig(SPI_TypeDef* SPIx, uint16_t SPI_RxFIFOThreshold)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_RX_FIFO_THRESHOLD(SPI_RxFIFOThreshold));

  /* Clear FRXTH bit */
  SPIx->CR2 &= (uint16_t)~((uint16_t)SPI_CR2_FRXTH);

  /* Set new FRXTH bit value */
  SPIx->CR2 |= SPI_RxFIFOThreshold;
}

/**
  * @brief  Selects the data transfer direction in bidirectional mode for the specified SPI.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral. 
  * @param  SPI_Direction: specifies the data transfer direction in bidirectional mode. 
  *   This parameter can be one of the following values:
  *     @arg SPI_Direction_Tx: Selects Tx transmission direction
  *     @arg SPI_Direction_Rx: Selects Rx receive direction
  * @retval None
  */
void SPI_BiDirectionalLineConfig(SPI_TypeDef* SPIx, uint16_t SPI_Direction)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_DIRECTION(SPI_Direction));
  if (SPI_Direction == SPI_Direction_Tx)
  {
    /* Set the Tx only mode */
    SPIx->CR1 |= SPI_Direction_Tx;
  }
  else
  {
    /* Set the Rx only mode */
    SPIx->CR1 &= SPI_Direction_Rx;
  }
}

/**
  * @brief  Configures internally by software the NSS pin for the selected SPI.
  * @note    This function can be called only after the SPI_Init() function has 
  *          been called.  
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  SPI_NSSInternalSoft: specifies the SPI NSS internal state.
  *   This parameter can be one of the following values:
  *     @arg SPI_NSSInternalSoft_Set: Set NSS pin internally
  *     @arg SPI_NSSInternalSoft_Reset: Reset NSS pin internally
  * @retval None
  */
void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_NSS_INTERNAL(SPI_NSSInternalSoft));

  if (SPI_NSSInternalSoft != SPI_NSSInternalSoft_Reset)
  {
    /* Set NSS pin internally by software */
    SPIx->CR1 |= SPI_NSSInternalSoft_Set;
  }
  else
  {
    /* Reset NSS pin internally by software */
    SPIx->CR1 &= SPI_NSSInternalSoft_Reset;
  }
}

/**
  * @brief  Configures the full duplex mode for the I2Sx peripheral using its
  *         extension I2Sxext according to the specified parameters in the 
  *         I2S_InitStruct.
  * @param  I2Sxext: where x can be  2 or 3 to select the I2S peripheral extension block.
  * @param  I2S_InitStruct: pointer to an I2S_InitTypeDef structure that
  *         contains the configuration information for the specified I2S peripheral
  *         extension.
  * 
  * @note   The structure pointed by I2S_InitStruct parameter should be the same
  *         used for the master I2S peripheral. In this case, if the master is 
  *         configured as transmitter, the slave will be receiver and vice versa.
  *         Or you can force a different mode by modifying the field I2S_Mode to the
  *         value I2S_SlaveRx or I2S_SlaveTx indepedently of the master configuration.    
  *         
  * @note   The I2S full duplex extension can be configured in slave mode only.    
  *  
  * @retval None
  */
void I2S_FullDuplexConfig(SPI_TypeDef* I2Sxext, I2S_InitTypeDef* I2S_InitStruct)
{
  uint16_t tmpreg = 0, tmp = 0;
  
  /* Check the I2S parameters */
  assert_param(IS_I2S_EXT_PERIPH(I2Sxext));
  assert_param(IS_I2S_MODE(I2S_InitStruct->I2S_Mode));
  assert_param(IS_I2S_STANDARD(I2S_InitStruct->I2S_Standard));
  assert_param(IS_I2S_DATA_FORMAT(I2S_InitStruct->I2S_DataFormat));
  assert_param(IS_I2S_CPOL(I2S_InitStruct->I2S_CPOL));  

/*----------------------- SPIx I2SCFGR & I2SPR Configuration -----------------*/
  /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
  I2Sxext->I2SCFGR &= I2SCFGR_CLEAR_MASK; 
  I2Sxext->I2SPR = 0x0002;
  
  /* Get the I2SCFGR register value */
  tmpreg = I2Sxext->I2SCFGR;
  
  /* Get the mode to be configured for the extended I2S */
  if ((I2S_InitStruct->I2S_Mode == I2S_Mode_MasterTx) || (I2S_InitStruct->I2S_Mode == I2S_Mode_SlaveTx))
  {
    tmp = I2S_Mode_SlaveRx;
  }
  else
  {
    if ((I2S_InitStruct->I2S_Mode == I2S_Mode_MasterRx) || (I2S_InitStruct->I2S_Mode == I2S_Mode_SlaveRx))
    {
      tmp = I2S_Mode_SlaveTx;
    }
  }

 
  /* Configure the I2S with the SPI_InitStruct values */
  tmpreg |= (uint16_t)((uint16_t)SPI_I2SCFGR_I2SMOD | (uint16_t)(tmp | \
                  (uint16_t)(I2S_InitStruct->I2S_Standard | (uint16_t)(I2S_InitStruct->I2S_DataFormat | \
                  (uint16_t)I2S_InitStruct->I2S_CPOL))));
 
  /* Write to SPIx I2SCFGR */  
  I2Sxext->I2SCFGR = tmpreg;
}

/**
  * @brief  Enables or disables the SS output for the selected SPI.
  * @note    This function can be called only after the SPI_Init() function has 
  *          been called and the NSS hardware management mode is selected. 
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  NewState: new state of the SPIx SS output. 
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_SSOutputCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected SPI SS output */
    SPIx->CR2 |= (uint16_t)SPI_CR2_SSOE;
  }
  else
  {
    /* Disable the selected SPI SS output */
    SPIx->CR2 &= (uint16_t)~((uint16_t)SPI_CR2_SSOE);
  }
}

/**
  * @brief  Enables or disables the NSS pulse management mode.
  * @note    This function can be called only after the SPI_Init() function has 
  *          been called. 
  * @note    When TI mode is selected, the control bits NSSP is not taken into 
  *          consideration and are configured by hardware respectively to the 
  *          TI mode requirements. 
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral. 
  * @param  NewState: new state of the NSS pulse management mode.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_NSSPulseModeCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the NSS pulse management mode */
    SPIx->CR2 |= SPI_CR2_NSSP;
  }
  else
  {
    /* Disable the NSS pulse management mode */
    SPIx->CR2 &= (uint16_t)~((uint16_t)SPI_CR2_NSSP);    
  }
}

/**
  * @}
  */

/** @defgroup SPI_Group2 Data transfers functions
 *  @brief   Data transfers functions
 *
@verbatim
 ===============================================================================
                    ##### Data transfers functions #####
 ===============================================================================  
    [..] This section provides a set of functions allowing to manage the SPI or I2S 
         data transfers.
    [..] In reception, data are received and then stored into an internal Rx buffer while 
         In transmission, data are first stored into an internal Tx buffer before being 
         transmitted.
    [..] The read access of the SPI_DR register can be done using the SPI_I2S_ReceiveData()
         function and returns the Rx buffered value. Whereas a write access to the SPI_DR 
         can be done using SPI_I2S_SendData() function and stores the written data into 
         Tx buffer.

@endverbatim
  * @{
  */

/**
  * @brief  Transmits a Data through the SPIx peripheral.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  Data: Data to be transmitted.
  * @retval None
  */
void SPI_SendData8(SPI_TypeDef* SPIx, uint8_t Data)
{
  uint32_t spixbase = 0x00;

  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));

  spixbase = (uint32_t)SPIx; 
  spixbase += 0x0C;
  
  *(__IO uint8_t *) spixbase = Data;
}

/**
  * @brief  Transmits a Data through the SPIx/I2Sx peripheral.
  * @param  SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.  
  * @param  Data: Data to be transmitted.
  * @retval None
  */
void SPI_I2S_SendData16(SPI_TypeDef* SPIx, uint16_t Data)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  
  SPIx->DR = (uint16_t)Data;
}

/**
  * @brief  Returns the most recent received data by the SPIx peripheral. 
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @retval The value of the received data.
  */
uint8_t SPI_ReceiveData8(SPI_TypeDef* SPIx)
{
  uint32_t spixbase = 0x00;
  
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  
  spixbase = (uint32_t)SPIx; 
  spixbase += 0x0C;
  
  return *(__IO uint8_t *) spixbase;
}

/**
  * @brief  Returns the most recent received data by the SPIx peripheral. 
  * @param  SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
  * @retval The value of the received data.
  */
uint16_t SPI_I2S_ReceiveData16(SPI_TypeDef* SPIx)
{  
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  
  return SPIx->DR;
}
/**
  * @}
  */

/** @defgroup SPI_Group3 Hardware CRC Calculation functions
 *  @brief   Hardware CRC Calculation functions
 *
@verbatim   
 ===============================================================================
                  ##### Hardware CRC Calculation functions #####
 ===============================================================================  
    [..] This section provides a set of functions allowing to manage the SPI CRC hardware 
         calculation.
    [..] SPI communication using CRC is possible through the following procedure:
         (#) Program the Data direction, Polarity, Phase, First Data, Baud Rate Prescaler, 
             Slave Management, Peripheral Mode and CRC Polynomial values using the SPI_Init()
             function.
         (#) Enable the CRC calculation using the SPI_CalculateCRC() function.
         (#) Enable the SPI using the SPI_Cmd() function
         (#) Before writing the last data to the TX buffer, set the CRCNext bit using the 
             SPI_TransmitCRC() function to indicate that after transmission of the last 
             data, the CRC should be transmitted.
         (#) After transmitting the last data, the SPI transmits the CRC. The SPI_CR1_CRCNEXT
             bit is reset. The CRC is also received and compared against the SPI_RXCRCR 
             value. 
             If the value does not match, the SPI_FLAG_CRCERR flag is set and an interrupt
             can be generated when the SPI_I2S_IT_ERR interrupt is enabled.
    [..]
    (@)
         (+@) It is advised to don't read the calculate CRC values during the communication.
         (+@) When the SPI is in slave mode, be careful to enable CRC calculation only 
              when the clock is stable, that is, when the clock is in the steady state. 
              If not, a wrong CRC calculation may be done. In fact, the CRC is sensitive 
              to the SCK slave input clock as soon as CRCEN is set, and this, whatever 
              the value of the SPE bit.
         (+@) With high bitrate frequencies, be careful when transmitting the CRC.
              As the number of used CPU cycles has to be as low as possible in the CRC 
              transfer phase, it is forbidden to call software functions in the CRC 
              transmission sequence to avoid errors in the last data and CRC reception. 
              In fact, CRCNEXT bit has to be written before the end of the transmission/reception 
              of the last data.
         (+@) For high bit rate frequencies, it is advised to use the DMA mode to avoid the
              degradation of the SPI speed performance due to CPU accesses impacting the 
              SPI bandwidth.
         (+@) When the STM32F30x are configured as slaves and the NSS hardware mode is 
              used, the NSS pin needs to be kept low between the data phase and the CRC 
              phase.
         (+@) When the SPI is configured in slave mode with the CRC feature enabled, CRC
              calculation takes place even if a high level is applied on the NSS pin. 
              This may happen for example in case of a multislave environment where the 
              communication master addresses slaves alternately.
         (+@) Between a slave deselection (high level on NSS) and a new slave selection 
              (low level on NSS), the CRC value should be cleared on both master and slave
              sides in order to resynchronize the master and slave for their respective 
              CRC calculation.
    [..]          
    (@) To clear the CRC, follow the procedure below:
         (#@) Disable SPI using the SPI_Cmd() function.
         (#@) Disable the CRC calculation using the SPI_CalculateCRC() function.
         (#@) Enable the CRC calculation using the SPI_CalculateCRC() function.
         (#@) Enable SPI using the SPI_Cmd() function.

@endverbatim
  * @{
  */

/**
  * @brief  Configures the CRC calculation length for the selected SPI.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  SPI_CRCLength: specifies the SPI CRC calculation length.
  *   This parameter can be one of the following values:
  *     @arg SPI_CRCLength_8b: Set CRC Calculation to 8 bits
  *     @arg SPI_CRCLength_16b: Set CRC Calculation to 16 bits
  * @retval None
  */
void SPI_CRCLengthConfig(SPI_TypeDef* SPIx, uint16_t SPI_CRCLength)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_CRC_LENGTH(SPI_CRCLength));

  /* Clear CRCL bit */
  SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_CRCL);

  /* Set new CRCL bit value */
  SPIx->CR1 |= SPI_CRCLength;
}

/**
  * @brief  Enables or disables the CRC value calculation of the transferred bytes.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  NewState: new state of the SPIx CRC value calculation.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_CalculateCRC(SPI_TypeDef* SPIx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected SPI CRC calculation */
    SPIx->CR1 |= SPI_CR1_CRCEN;
  }
  else
  {
    /* Disable the selected SPI CRC calculation */
    SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_CRCEN);
  }
}

/**
  * @brief  Transmits the SPIx CRC value.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @retval None
  */
void SPI_TransmitCRC(SPI_TypeDef* SPIx)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));

  /* Enable the selected SPI CRC transmission */
  SPIx->CR1 |= SPI_CR1_CRCNEXT;
}

/**
  * @brief  Returns the transmit or the receive CRC register value for the specified SPI.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  SPI_CRC: specifies the CRC register to be read.
  *   This parameter can be one of the following values:
  *     @arg SPI_CRC_Tx: Selects Tx CRC register
  *     @arg SPI_CRC_Rx: Selects Rx CRC register
  * @retval The selected CRC register value..
  */
uint16_t SPI_GetCRC(SPI_TypeDef* SPIx, uint8_t SPI_CRC)
{
  uint16_t crcreg = 0;
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_CRC(SPI_CRC));

  if (SPI_CRC != SPI_CRC_Rx)
  {
    /* Get the Tx CRC register */
    crcreg = SPIx->TXCRCR;
  }
  else
  {
    /* Get the Rx CRC register */
    crcreg = SPIx->RXCRCR;
  }
  /* Return the selected CRC register */
  return crcreg;
}

/**
  * @brief  Returns the CRC Polynomial register value for the specified SPI.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @retval The CRC Polynomial register value.
  */
uint16_t SPI_GetCRCPolynomial(SPI_TypeDef* SPIx)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));

  /* Return the CRC polynomial register */
  return SPIx->CRCPR;
}

/**
  * @}
  */

/** @defgroup SPI_Group4 DMA transfers management functions
 *  @brief   DMA transfers management functions
  *
@verbatim   
 ===============================================================================
                  ##### DMA transfers management functions #####
 ===============================================================================

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the SPIx/I2Sx DMA interface.
  * @param  SPIx:To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode. 
  * @param  SPI_I2S_DMAReq: specifies the SPI DMA transfer request to be enabled or disabled. 
  *   This parameter can be any combination of the following values:
  *     @arg SPI_I2S_DMAReq_Tx: Tx buffer DMA transfer request
  *     @arg SPI_I2S_DMAReq_Rx: Rx buffer DMA transfer request
  * @param  NewState: new state of the selected SPI DMA transfer request.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_I2S_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_I2S_DMAReq, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  assert_param(IS_SPI_I2S_DMA_REQ(SPI_I2S_DMAReq));

  if (NewState != DISABLE)
  {
    /* Enable the selected SPI DMA requests */
    SPIx->CR2 |= SPI_I2S_DMAReq;
  }
  else
  {
    /* Disable the selected SPI DMA requests */
    SPIx->CR2 &= (uint16_t)~SPI_I2S_DMAReq;
  }
}

/**
  * @brief  Configures the number of data to transfer type(Even/Odd) for the DMA
  *         last transfers and for the selected SPI.
  * @note   This function have a meaning only if DMA mode is selected and if 
  *         the packing mode is used (data length <= 8 and DMA transfer size halfword)  
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  SPI_LastDMATransfer: specifies the SPI last DMA transfers state.
  *   This parameter can be one of the following values:
  *     @arg SPI_LastDMATransfer_TxEvenRxEven: Number of data for transmission Even
  *          and number of data for reception Even.
  *     @arg SPI_LastDMATransfer_TxOddRxEven: Number of data for transmission Odd
  *          and number of data for reception Even.
  *     @arg SPI_LastDMATransfer_TxEvenRxOdd: Number of data for transmission Even
  *          and number of data for reception Odd.
  *     @arg SPI_LastDMATransfer_TxOddRxOdd: RNumber of data for transmission Odd
  *          and number of data for reception Odd.
  * @retval None
  */
void SPI_LastDMATransferCmd(SPI_TypeDef* SPIx, uint16_t SPI_LastDMATransfer)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_LAST_DMA_TRANSFER(SPI_LastDMATransfer));

  /* Clear LDMA_TX and LDMA_RX bits */
  SPIx->CR2 &= CR2_LDMA_MASK;

  /* Set new LDMA_TX and LDMA_RX bits value */
  SPIx->CR2 |= SPI_LastDMATransfer; 
}

/**
  * @}
  */

/** @defgroup SPI_Group5 Interrupts and flags management functions
 *  @brief   Interrupts and flags management functions
  *
@verbatim   
 ===============================================================================
              ##### Interrupts and flags management functions #####
 ===============================================================================  
    [..] This section provides a set of functions allowing to configure the SPI/I2S 
         Interrupts sources and check or clear the flags or pending bits status.
         The user should identify which mode will be used in his application to manage 
         the communication: Polling mode, Interrupt mode or DMA mode. 
    
  *** Polling Mode ***
  ====================
    [..] In Polling Mode, the SPI/I2S communication can be managed by 9 flags:
         (#) SPI_I2S_FLAG_TXE : to indicate the status of the transmit buffer register.
         (#) SPI_I2S_FLAG_RXNE : to indicate the status of the receive buffer register.
         (#) SPI_I2S_FLAG_BSY : to indicate the state of the communication layer of the SPI.
         (#) SPI_FLAG_CRCERR : to indicate if a CRC Calculation error occur.              
         (#) SPI_FLAG_MODF : to indicate if a Mode Fault error occur.
         (#) SPI_I2S_FLAG_OVR : to indicate if an Overrun error occur.
         (#) SPI_I2S_FLAG_FRE: to indicate a Frame Format error occurs.
         (#) I2S_FLAG_UDR: to indicate an Underrun error occurs.
         (#) I2S_FLAG_CHSIDE: to indicate Channel Side.
    [..]
         (@) Do not use the BSY flag to handle each data transmission or reception.
             It is better to use the TXE and RXNE flags instead.
    [..] In this Mode it is advised to use the following functions:
         (+) FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);
         (+) void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);

  *** Interrupt Mode ***
  ======================
    [..] In Interrupt Mode, the SPI/I2S communication can be managed by 3 interrupt sources
         and 5 pending bits: 
    [..] Pending Bits:
         (#) SPI_I2S_IT_TXE : to indicate the status of the transmit buffer register.
         (#) SPI_I2S_IT_RXNE : to indicate the status of the receive buffer register.
         (#) SPI_I2S_IT_OVR : to indicate if an Overrun error occur.
         (#) I2S_IT_UDR : to indicate an Underrun Error occurs.
         (#) SPI_I2S_FLAG_FRE : to indicate a Frame Format error occurs.
    [..] Interrupt Source:
         (#) SPI_I2S_IT_TXE: specifies the interrupt source for the Tx buffer empty 
             interrupt.  
         (#) SPI_I2S_IT_RXNE : specifies the interrupt source for the Rx buffer not 
             empty interrupt.
         (#) SPI_I2S_IT_ERR : specifies the interrupt source for the errors interrupt.
    [..] In this Mode it is advised to use the following functions:
         (+) void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState);
         (+) ITStatus SPI_I2S_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT);

  *** FIFO Status ***
  ===================
    [..] It is possible to monitor the FIFO status when a transfer is ongoing using the
         following function:
         (+) uint32_t SPI_GetFIFOStatus(uint8_t SPI_FIFO_Direction); 

  *** DMA Mode ***
  ================
    [..] In DMA Mode, the SPI communication can be managed by 2 DMA Channel requests:
         (#) SPI_I2S_DMAReq_Tx: specifies the Tx buffer DMA transfer request.
         (#) SPI_I2S_DMAReq_Rx: specifies the Rx buffer DMA transfer request.
    [..] In this Mode it is advised to use the following function:
         (+) void SPI_I2S_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_I2S_DMAReq, FunctionalState NewState);

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified SPI/I2S interrupts.
  * @param  SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.  
  * @param  SPI_I2S_IT: specifies the SPI interrupt source to be enabled or disabled. 
  *   This parameter can be one of the following values:
  *     @arg SPI_I2S_IT_TXE: Tx buffer empty interrupt mask
  *     @arg SPI_I2S_IT_RXNE: Rx buffer not empty interrupt mask
  *     @arg SPI_I2S_IT_ERR: Error interrupt mask
  * @param  NewState: new state of the specified SPI interrupt.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState)
{
  uint16_t itpos = 0, itmask = 0 ;

  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  assert_param(IS_SPI_I2S_CONFIG_IT(SPI_I2S_IT));

  /* Get the SPI IT index */
  itpos = SPI_I2S_IT >> 4;

  /* Set the IT mask */
  itmask = (uint16_t)1 << (uint16_t)itpos;

  if (NewState != DISABLE)
  {
    /* Enable the selected SPI interrupt */
    SPIx->CR2 |= itmask;
  }
  else
  {
    /* Disable the selected SPI interrupt */
    SPIx->CR2 &= (uint16_t)~itmask;
  }
}

/**
  * @brief  Returns the current SPIx Transmission FIFO filled level.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @retval The Transmission FIFO filling state.
  *   - SPI_TransmissionFIFOStatus_Empty: when FIFO is empty
  *   - SPI_TransmissionFIFOStatus_1QuarterFull: if more than 1 quarter-full.
  *   - SPI_TransmissionFIFOStatus_HalfFull: if more than 1 half-full.
  *   - SPI_TransmissionFIFOStatus_Full: when FIFO is full.
  */
uint16_t SPI_GetTransmissionFIFOStatus(SPI_TypeDef* SPIx)
{
  /* Get the SPIx Transmission FIFO level bits */
  return (uint16_t)((SPIx->SR & SPI_SR_FTLVL));
}

/**
  * @brief  Returns the current SPIx Reception FIFO filled level.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @retval The Reception FIFO filling state.
  *   - SPI_ReceptionFIFOStatus_Empty: when FIFO is empty
  *   - SPI_ReceptionFIFOStatus_1QuarterFull: if more than 1 quarter-full.
  *   - SPI_ReceptionFIFOStatus_HalfFull: if more than 1 half-full.
  *   - SPI_ReceptionFIFOStatus_Full: when FIFO is full.
  */
uint16_t SPI_GetReceptionFIFOStatus(SPI_TypeDef* SPIx)
{
  /* Get the SPIx Reception FIFO level bits */
  return (uint16_t)((SPIx->SR & SPI_SR_FRLVL));
}

/**
  * @brief  Checks whether the specified SPI flag is set or not.
  * @param  SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.  
  * @param  SPI_I2S_FLAG: specifies the SPI flag to check. 
  *   This parameter can be one of the following values:
  *     @arg SPI_I2S_FLAG_TXE: Transmit buffer empty flag.
  *     @arg SPI_I2S_FLAG_RXNE: Receive buffer not empty flag.
  *     @arg SPI_I2S_FLAG_BSY: Busy flag.
  *     @arg SPI_I2S_FLAG_OVR: Overrun flag.
  *     @arg SPI_I2S_FLAG_MODF: Mode Fault flag.
  *     @arg SPI_I2S_FLAG_CRCERR: CRC Error flag.
  *     @arg SPI_I2S_FLAG_FRE: TI frame format error flag.
  *     @arg I2S_FLAG_UDR: Underrun Error flag.
  *     @arg I2S_FLAG_CHSIDE: Channel Side flag.   
  * @retval The new state of SPI_I2S_FLAG (SET or RESET).
  */
FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
{
  FlagStatus bitstatus = RESET;
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  assert_param(IS_SPI_I2S_GET_FLAG(SPI_I2S_FLAG));

  /* Check the status of the specified SPI flag */
  if ((SPIx->SR & SPI_I2S_FLAG) != (uint16_t)RESET)
  {
    /* SPI_I2S_FLAG is set */
    bitstatus = SET;
  }
  else
  {
    /* SPI_I2S_FLAG is reset */
    bitstatus = RESET;
  }
  /* Return the SPI_I2S_FLAG status */
  return  bitstatus;
}

/**
  * @brief  Clears the SPIx CRC Error (CRCERR) flag.
  * @param  SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode. 
  * @param  SPI_I2S_FLAG: specifies the SPI flag to clear. 
  *   This function clears only CRCERR flag.
  * @note OVR (OverRun error) flag is cleared by software sequence: a read 
  *       operation to SPI_DR register (SPI_I2S_ReceiveData()) followed by a read 
  *       operation to SPI_SR register (SPI_I2S_GetFlagStatus()).
  * @note MODF (Mode Fault) flag is cleared by software sequence: a read/write 
  *       operation to SPI_SR register (SPI_I2S_GetFlagStatus()) followed by a 
  *       write operation to SPI_CR1 register (SPI_Cmd() to enable the SPI).
  * @retval None
  */
void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  assert_param(IS_SPI_CLEAR_FLAG(SPI_I2S_FLAG));

  /* Clear the selected SPI CRC Error (CRCERR) flag */
  SPIx->SR = (uint16_t)~SPI_I2S_FLAG;
}

/**
  * @brief  Checks whether the specified SPI/I2S interrupt has occurred or not.
  * @param  SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3 
  *         in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.  
  * @param  SPI_I2S_IT: specifies the SPI interrupt source to check. 
  *   This parameter can be one of the following values:
  *     @arg SPI_I2S_IT_TXE: Transmit buffer empty interrupt.
  *     @arg SPI_I2S_IT_RXNE: Receive buffer not empty interrupt.
  *     @arg SPI_IT_MODF: Mode Fault interrupt.
  *     @arg SPI_I2S_IT_OVR: Overrun interrupt.
  *     @arg I2S_IT_UDR: Underrun interrupt.  
  *     @arg SPI_I2S_IT_FRE: Format Error interrupt.  
  * @retval The new state of SPI_I2S_IT (SET or RESET).
  */
ITStatus SPI_I2S_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT)
{
  ITStatus bitstatus = RESET;
  uint16_t itpos = 0, itmask = 0, enablestatus = 0;

  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
  assert_param(IS_SPI_I2S_GET_IT(SPI_I2S_IT));

  /* Get the SPI_I2S_IT index */
  itpos = 0x01 << (SPI_I2S_IT & 0x0F);

  /* Get the SPI_I2S_IT IT mask */
  itmask = SPI_I2S_IT >> 4;

  /* Set the IT mask */
  itmask = 0x01 << itmask;

  /* Get the SPI_I2S_IT enable bit status */
  enablestatus = (SPIx->CR2 & itmask) ;

  /* Check the status of the specified SPI interrupt */
  if (((SPIx->SR & itpos) != (uint16_t)RESET) && enablestatus)
  {
    /* SPI_I2S_IT is set */
    bitstatus = SET;
  }
  else
  {
    /* SPI_I2S_IT is reset */
    bitstatus = RESET;
  }
  /* Return the SPI_I2S_IT status */
  return bitstatus;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */ 

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/