summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/cmsis/TARGET_STM/TARGET_STM32F3XX/stm32f30x_rcc.c
blob: d70377b7d75efbcbed9af9997cbce08d7f7bf263 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
/**
  ******************************************************************************
  * @file    stm32f30x_rcc.c
  * @author  MCD Application Team
  * @version V1.1.0
  * @date    27-February-2014
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Reset and clock control (RCC) peripheral:           
  *           + Internal/external clocks, PLL, CSS and MCO configuration
  *           + System, AHB and APB busses clocks configuration
  *           + Peripheral clocks configuration
  *           + Interrupts and flags management
  *
  @verbatim
               
 ===============================================================================
                      ##### RCC specific features #####
 ===============================================================================
    [..] After reset the device is running from HSI (8 MHz) with Flash 0 WS, 
         all peripherals are off except internal SRAM, Flash and SWD.
         (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
             all peripherals mapped on these busses are running at HSI speed.
       	 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
         (+) All GPIOs are in input floating state, except the SWD pins which
             are assigned to be used for debug purpose.
    [..] Once the device starts from reset, the user application has to:        
         (+) Configure the clock source to be used to drive the System clock
             (if the application needs higher frequency/performance).
         (+) Configure the System clock frequency and Flash settings.  
         (+) Configure the AHB and APB busses prescalers.
         (+) Enable the clock for the peripheral(s) to be used.
         (+) Configure the clock source(s) for peripherals which clocks are not
             derived from the System clock (ADC, TIM, I2C, USART, RTC and IWDG).      
                        
  @endverbatim
    
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f30x_rcc.h"

/** @addtogroup STM32F30x_StdPeriph_Driver
  * @{
  */

/** @defgroup RCC 
  * @brief RCC driver modules
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ------------ RCC registers bit address in the alias region ----------- */
#define RCC_OFFSET                (RCC_BASE - PERIPH_BASE)

/* --- CR Register ---*/

/* Alias word address of HSION bit */
#define CR_OFFSET                 (RCC_OFFSET + 0x00)
#define HSION_BitNumber           0x00
#define CR_HSION_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))

/* Alias word address of PLLON bit */
#define PLLON_BitNumber           0x18
#define CR_PLLON_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))

/* Alias word address of CSSON bit */
#define CSSON_BitNumber           0x13
#define CR_CSSON_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))

/* --- CFGR Register ---*/
/* Alias word address of USBPRE bit */
#define CFGR_OFFSET               (RCC_OFFSET + 0x04)
#define USBPRE_BitNumber          0x16
#define CFGR_USBPRE_BB            (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4))
/* Alias word address of I2SSRC bit */
#define I2SSRC_BitNumber          0x17
#define CFGR_I2SSRC_BB            (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (I2SSRC_BitNumber * 4))

/* --- BDCR Register ---*/

/* Alias word address of RTCEN bit */
#define BDCR_OFFSET               (RCC_OFFSET + 0x20)
#define RTCEN_BitNumber           0x0F
#define BDCR_RTCEN_BB             (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))

/* Alias word address of BDRST bit */
#define BDRST_BitNumber           0x10
#define BDCR_BDRST_BB             (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))

/* --- CSR Register ---*/

/* Alias word address of LSION bit */
#define CSR_OFFSET                (RCC_OFFSET + 0x24)
#define LSION_BitNumber           0x00
#define CSR_LSION_BB              (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))

/* ---------------------- RCC registers bit mask ------------------------ */
/* RCC Flag Mask */
#define FLAG_MASK                 ((uint8_t)0x1F)

/* CFGR register byte 3 (Bits[31:23]) base address */
#define CFGR_BYTE3_ADDRESS        ((uint32_t)0x40021007)

/* CIR register byte 2 (Bits[15:8]) base address */
#define CIR_BYTE2_ADDRESS         ((uint32_t)0x40021009)

/* CIR register byte 3 (Bits[23:16]) base address */
#define CIR_BYTE3_ADDRESS         ((uint32_t)0x4002100A)

/* CR register byte 2 (Bits[23:16]) base address */
#define CR_BYTE2_ADDRESS          ((uint32_t)0x40021002)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
const uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
const uint16_t ADCPrescTable[16] = {1, 2, 4, 6, 8, 10, 12, 16, 32, 64, 128, 256, 0, 0, 0, 0 };

/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup RCC_Private_Functions
  * @{
  */

/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
 *  @brief   Internal and external clocks, PLL, CSS and MCO configuration functions 
 *
@verbatim   
 ===============================================================================
 ##### Internal-external clocks, PLL, CSS and MCO configuration functions #####
 ===============================================================================  
    [..] This section provides functions allowing to configure the internal/external 
         clocks, PLL, CSS and MCO.
         (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly 
             or through the PLL as System clock source.
             The HSI clock can be used also to clock the USART and I2C peripherals.
         (#) LSI (low-speed internal), 40 KHz low consumption RC used as IWDG and/or RTC
             clock source.
         (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
             through the PLL as System clock source. Can be used also as RTC clock source.
         (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
             LSE can be used also to clock the USART peripherals.
         (#) PLL (clocked by HSI or HSE), for System clock.
         (#) CSS (Clock security system), once enabled and if a HSE clock failure occurs 
             (HSE used directly or through PLL as System clock source), the System clock
             is automatically switched to HSI and an interrupt is generated if enabled. 
             The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt) 
             exception vector.   
         (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE,
             PLL clock on PA8 pin.

@endverbatim
  * @{
  */

/**
  * @brief  Resets the RCC clock configuration to the default reset state.
  * @note   The default reset state of the clock configuration is given below:
  * @note     HSI ON and used as system clock source 
  * @note     HSE and PLL OFF
  * @note     AHB, APB1 and APB2 prescalers set to 1.
  * @note     CSS and MCO OFF
  * @note     All interrupts disabled
  * @note   However, this function doesn't modify the configuration of the
  * @note     Peripheral clocks
  * @note     LSI, LSE and RTC clocks                  
  * @param  None
  * @retval None
  */
void RCC_DeInit(void)
{
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

  /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
  RCC->CFGR &= (uint32_t)0xF8FFC000;
  
  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE bits */
  RCC->CFGR &= (uint32_t)0xFF80FFFF;

  /* Reset PREDIV1[3:0] and ADCPRE[13:4] bits */
  RCC->CFGR2 &= (uint32_t)0xFFFFC000;

  /* Reset USARTSW[1:0], I2CSW and TIMSW bits */
  RCC->CFGR3 &= (uint32_t)0xF00ECCC;
  
  /* Disable all interrupts */
  RCC->CIR = 0x00000000;
}

/**
  * @brief  Configures the External High Speed oscillator (HSE).
  * @note   After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
  *         software should wait on HSERDY flag to be set indicating that HSE clock
  *         is stable and can be used to clock the PLL and/or system clock.
  * @note   HSE state can not be changed if it is used directly or through the
  *         PLL as system clock. In this case, you have to select another source
  *         of the system clock then change the HSE state (ex. disable it).
  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.         
  * @note   This function resets the CSSON bit, so if the Clock security system(CSS)
  *         was previously enabled you have to enable it again after calling this
  *         function.
  * @param  RCC_HSE: specifies the new state of the HSE.
  *   This parameter can be one of the following values:
  *     @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
  *                       6 HSE oscillator clock cycles.
  *     @arg RCC_HSE_ON: turn ON the HSE oscillator
  *     @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_HSEConfig(uint8_t RCC_HSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_HSE(RCC_HSE));

  /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE_OFF;

  /* Set the new HSE configuration -------------------------------------------*/
  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE;

}

/**
  * @brief  Waits for HSE start-up.
  * @note   This function waits on HSERDY flag to be set and return SUCCESS if 
  *         this flag is set, otherwise returns ERROR if the timeout is reached 
  *         and this flag is not set. The timeout value is defined by the constant
  *         HSE_STARTUP_TIMEOUT in stm32f30x.h file. You can tailor it depending
  *         on the HSE crystal used in your application. 
  * @param  None
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: HSE oscillator is stable and ready to use
  *          - ERROR: HSE oscillator not yet ready
  */
ErrorStatus RCC_WaitForHSEStartUp(void)
{
  __IO uint32_t StartUpCounter = 0;
  ErrorStatus status = ERROR;
  FlagStatus HSEStatus = RESET;
  
  /* Wait till HSE is ready and if timeout is reached exit */
  do
  {
    HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
    StartUpCounter++;  
  } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
  
  if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
  {
    status = SUCCESS;
  }
  else
  {
    status = ERROR;
  }  
  return (status);
}

/**
  * @brief  Adjusts the Internal High Speed oscillator (HSI) calibration value.
  * @note   The calibration is used to compensate for the variations in voltage
  *         and temperature that influence the frequency of the internal HSI RC.
  *         Refer to the Application Note AN3300 for more details on how to  
  *         calibrate the HSI.
  * @param  HSICalibrationValue: specifies the HSI calibration trimming value.
  *         This parameter must be a number between 0 and 0x1F.
  * @retval None
  */
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
  
  tmpreg = RCC->CR;
  
  /* Clear HSITRIM[4:0] bits */
  tmpreg &= ~RCC_CR_HSITRIM;
  
  /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
  tmpreg |= (uint32_t)HSICalibrationValue << 3;
  
  /* Store the new value */
  RCC->CR = tmpreg;
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator (HSI).
  * @note   After enabling the HSI, the application software should wait on 
  *         HSIRDY flag to be set indicating that HSI clock is stable and can
  *         be used to clock the PLL and/or system clock.
  * @note   HSI can not be stopped if it is used directly or through the PLL
  *         as system clock. In this case, you have to select another source 
  *         of the system clock then stop the HSI.
  * @note   The HSI is stopped by hardware when entering STOP and STANDBY modes. 
  * @note   When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
  *         clock cycles.    
  * @param  NewState: new state of the HSI.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_HSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
}

/**
  * @brief  Configures the External Low Speed oscillator (LSE).
  * @note     As the LSE is in the Backup domain and write access is denied to this
  *           domain after reset, you have to enable write access using 
  *           PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
  *           (to be done once after reset).
  * @note     After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
  *           software should wait on LSERDY flag to be set indicating that LSE clock
  *           is stable and can be used to clock the RTC.
  * @param  RCC_LSE: specifies the new state of the LSE.
  *   This parameter can be one of the following values:
  *     @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
  *                       6 LSE oscillator clock cycles.
  *     @arg RCC_LSE_ON: turn ON the LSE oscillator
  *     @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_LSEConfig(uint32_t RCC_LSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_LSE(RCC_LSE));

  /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
  /* Reset LSEON bit */
  RCC->BDCR &= ~(RCC_BDCR_LSEON);

  /* Reset LSEBYP bit */
  RCC->BDCR &= ~(RCC_BDCR_LSEBYP);

  /* Configure LSE */
  RCC->BDCR |= RCC_LSE;
}

/**
  * @brief  Configures the External Low Speed oscillator (LSE) drive capability.
  * @param  RCC_LSEDrive: specifies the new state of the LSE drive capability.
  *   This parameter can be one of the following values:
  *     @arg RCC_LSEDrive_Low: LSE oscillator low drive capability.
  *     @arg RCC_LSEDrive_MediumLow: LSE oscillator medium low drive capability.
  *     @arg RCC_LSEDrive_MediumHigh: LSE oscillator medium high drive capability.
  *     @arg RCC_LSEDrive_High: LSE oscillator high drive capability.
  * @retval None
  */
void RCC_LSEDriveConfig(uint32_t RCC_LSEDrive)
{
  /* Check the parameters */
  assert_param(IS_RCC_LSE_DRIVE(RCC_LSEDrive));
  
  /* Clear LSEDRV[1:0] bits */
  RCC->BDCR &= ~(RCC_BDCR_LSEDRV);

  /* Set the LSE Drive */
  RCC->BDCR |= RCC_LSEDrive;
}

/**
  * @brief  Enables or disables the Internal Low Speed oscillator (LSI).  
  * @note   After enabling the LSI, the application software should wait on 
  *         LSIRDY flag to be set indicating that LSI clock is stable and can
  *         be used to clock the IWDG and/or the RTC.
  * @note   LSI can not be disabled if the IWDG is running.  
  * @note   When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
  *         clock cycles.
  * @param  NewState: new state of the LSI.
  *         This parameter can be: ENABLE or DISABLE. 
  * @retval None
  */
void RCC_LSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
}

/**
  * @brief  Configures the PLL clock source and multiplication factor.
  * @note   This function must be used only when the PLL is disabled.
  * @note   The minimum input clock frequency for PLL is 2 MHz (when using HSE as
  *         PLL source).   
  * @param  RCC_PLLSource: specifies the PLL entry clock source.
  *   This parameter can be one of the following values:
  *     @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided by 2 selected as
  *         PLL clock entry
  *     @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock source              
  * @param  RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
  *   This parameter can be RCC_PLLMul_x where x:[2,16] 
  *                                               
  * @retval None
  */
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
{
  /* Check the parameters */
  assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
  assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
  
  /* Clear PLL Source [16] and Multiplier [21:18] bits */
  RCC->CFGR &= ~(RCC_CFGR_PLLMULL | RCC_CFGR_PLLSRC);

  /* Set the PLL Source and Multiplier */
  RCC->CFGR |= (uint32_t)(RCC_PLLSource | RCC_PLLMul);
}

/**
  * @brief  Enables or disables the PLL.
  * @note   After enabling the PLL, the application software should wait on 
  *         PLLRDY flag to be set indicating that PLL clock is stable and can
  *         be used as system clock source.
  * @note   The PLL can not be disabled if it is used as system clock source
  * @note   The PLL is disabled by hardware when entering STOP and STANDBY modes.    
  * @param  NewState: new state of the PLL.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_PLLCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
}

/**
  * @brief  Configures the PREDIV1 division factor.
  * @note   This function must be used only when the PLL is disabled.
  * @param  RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor.
  *         This parameter can be RCC_PREDIV1_Divx where x:[1,16]
  * @retval None
  */
void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Div)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div));

  tmpreg = RCC->CFGR2;
  /* Clear PREDIV1[3:0] bits */
  tmpreg &= ~(RCC_CFGR2_PREDIV1);

  /* Set the PREDIV1 division factor */
  tmpreg |= RCC_PREDIV1_Div;

  /* Store the new value */
  RCC->CFGR2 = tmpreg;
}

/**
  * @brief  Enables or disables the Clock Security System.
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
  *         is automatically disabled and an interrupt is generated to inform the
  *         software about the failure (Clock Security System Interrupt, CSSI),
  *         allowing the MCU to perform rescue operations. The CSSI is linked to 
  *         the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.  
  * @param  NewState: new state of the Clock Security System.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
}

#ifdef STM32F303xC
/**
  * @brief  Selects the clock source to output on MCO pin (PA8).
  * @note   PA8 should be configured in alternate function mode.
  * @param  RCC_MCOSource: specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOSource_NoClock: No clock selected.
  *            @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
  *            @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
  *            @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
  *            @arg RCC_MCOSource_SYSCLK: System clock selected.
  *            @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
  *            @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
  *            @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
  *            @arg RCC_MCOSource_PLLCLK: PLL clock selected.
  *            @arg RCC_MCOSource_HSI48: HSI48 clock selected.  
  * @retval None
  */
void RCC_MCOConfig(uint8_t RCC_MCOSource)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));

  /* Get CFGR value */  
  tmpreg = RCC->CFGR;
  /* Clear MCO[3:0] bits */
  tmpreg &= ~(RCC_CFGR_MCO | RCC_CFGR_PLLNODIV);
  /* Set the RCC_MCOSource */
  tmpreg |= RCC_MCOSource<<24;
  /* Store the new value */
  RCC->CFGR = tmpreg;
}
#else

/**
  * @brief  Selects the clock source to output on MCO pin (PA8) and the corresponding
  *         prescsaler.
  * @note   PA8 should be configured in alternate function mode.
  * @param  RCC_MCOSource: specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOSource_NoClock: No clock selected.
  *            @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
  *            @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
  *            @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
  *            @arg RCC_MCOSource_SYSCLK: System clock selected.
  *            @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
  *            @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
  *            @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
  *            @arg RCC_MCOSource_PLLCLK: PLL clock selected.
  *            @arg RCC_MCOSource_HSI48: HSI48 clock selected.
  * @param  RCC_MCOPrescaler: specifies the prescaler on MCO pin.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOPrescaler_1: MCO clock is divided by 1.
  *            @arg RCC_MCOPrescaler_2: MCO clock is divided by 2.
  *            @arg RCC_MCOPrescaler_4: MCO clock is divided by 4.
  *            @arg RCC_MCOPrescaler_8: MCO clock is divided by 8.
  *            @arg RCC_MCOPrescaler_16: MCO clock is divided by 16.
  *            @arg RCC_MCOPrescaler_32: MCO clock is divided by 32.
  *            @arg RCC_MCOPrescaler_64: MCO clock is divided by 64.
  *            @arg RCC_MCOPrescaler_128: MCO clock is divided by 128.    
  * @retval None
  */
void RCC_MCOConfig(uint8_t RCC_MCOSource, uint32_t RCC_MCOPrescaler)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
  assert_param(IS_RCC_MCO_PRESCALER(RCC_MCOPrescaler));
    
  /* Get CFGR value */  
  tmpreg = RCC->CFGR;
  /* Clear MCOPRE[2:0] bits */
  tmpreg &= ~(RCC_CFGR_MCO_PRE | RCC_CFGR_MCO | RCC_CFGR_PLLNODIV);
  /* Set the RCC_MCOSource and RCC_MCOPrescaler */
  tmpreg |= (RCC_MCOPrescaler | RCC_MCOSource<<24);
  /* Store the new value */
  RCC->CFGR = tmpreg;
}
#endif /* STM32F303xC */

/**
  * @}
  */

/** @defgroup RCC_Group2 System AHB, APB1 and APB2 busses clocks configuration functions
 *  @brief   System, AHB and APB busses clocks configuration functions
 *
@verbatim   
 ===============================================================================
  ##### System, AHB, APB1 and APB2 busses clocks configuration functions #####
 ===============================================================================  
    [..] This section provide functions allowing to configure the System, AHB, APB1 and 
         APB2 busses clocks.
         (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
             HSE and PLL.
             The AHB clock (HCLK) is derived from System clock through configurable prescaler
             and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA and GPIO).
             APB1 (PCLK1) and APB2 (PCLK2) clocks are derived from AHB clock through 
             configurable prescalers and used to clock the peripherals mapped on these busses.
             You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.

         (#) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 72 MHz.
             Depending on the maximum frequency, the FLASH wait states (WS) should be 
             adapted accordingly:
        +---------------------------------+
        |  Wait states  |   HCLK clock    |
        |   (Latency)   | frequency (MHz) |
        |-------------- |-----------------|             
        |0WS(1CPU cycle)| 0 < HCLK <= 24  |
        |---------------|-----------------| 
        |1WS(2CPU cycle)|24 < HCLK <=48   |
        |---------------|-----------------| 
        |2WS(3CPU cycle)|48 < HCLK <= 72  |
        +---------------------------------+

         (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and 
             prefetch is disabled.
        [..]
         (@) All the peripheral clocks are derived from the System clock (SYSCLK) 
             except:
             (+@) The FLASH program/erase clock  which is always HSI 8MHz clock.
             (+@) The USB 48 MHz clock which is derived from the PLL VCO clock.
             (+@) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
             (+@) The I2C clock which can be derived as well from HSI 8MHz clock.
             (+@) The ADC clock which is derived from PLL output.
             (+@) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC 
                  (HSE divided by a programmable prescaler). The System clock (SYSCLK) 
                  frequency must be higher or equal to the RTC clock frequency.
             (+@) IWDG clock which is always the LSI clock.
    [..] It is recommended to use the following software sequences to tune the number
         of wait states needed to access the Flash memory with the CPU frequency (HCLK).
         (+) Increasing the CPU frequency
            (++) Program the Flash Prefetch buffer, using "FLASH_PrefetchBufferCmd(ENABLE)" 
                 function
            (++) Check that Flash Prefetch buffer activation is taken into account by 
                 reading FLASH_ACR using the FLASH_GetPrefetchBufferStatus() function
            (++) Program Flash WS to 1 or 2, using "FLASH_SetLatency()" function
            (++) Check that the new number of WS is taken into account by reading FLASH_ACR
            (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
            (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
            (++) Check that the new CPU clock source is taken into account by reading 
                 the clock source status, using "RCC_GetSYSCLKSource()" function 
         (+) Decreasing the CPU frequency
            (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
            (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
            (++) Check that the new CPU clock source is taken into account by reading 
                 the clock source status, using "RCC_GetSYSCLKSource()" function
            (++) Program the new number of WS, using "FLASH_SetLatency()" function
            (++) Check that the new number of WS is taken into account by reading FLASH_ACR
            (++) Disable the Flash Prefetch buffer using "FLASH_PrefetchBufferCmd(DISABLE)" 
                 function
            (++) Check that Flash Prefetch buffer deactivation is taken into account by reading FLASH_ACR
                 using the FLASH_GetPrefetchBufferStatus() function.

@endverbatim
  * @{
  */

/**
  * @brief  Configures the system clock (SYSCLK).
  * @note     The HSI is used (enabled by hardware) as system clock source after
  *           startup from Reset, wake-up from STOP and STANDBY mode, or in case
  *           of failure of the HSE used directly or indirectly as system clock
  *           (if the Clock Security System CSS is enabled).
  * @note     A switch from one clock source to another occurs only if the target
  *           clock source is ready (clock stable after startup delay or PLL locked). 
  *           If a clock source which is not yet ready is selected, the switch will
  *           occur when the clock source will be ready. 
  *           You can use RCC_GetSYSCLKSource() function to know which clock is
  *           currently used as system clock source.  
  * @param  RCC_SYSCLKSource: specifies the clock source used as system clock source 
  *   This parameter can be one of the following values:
  *     @arg RCC_SYSCLKSource_HSI:    HSI selected as system clock source
  *     @arg RCC_SYSCLKSource_HSE:    HSE selected as system clock source
  *     @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
  * @retval None
  */
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
  
  tmpreg = RCC->CFGR;
  
  /* Clear SW[1:0] bits */
  tmpreg &= ~RCC_CFGR_SW;
  
  /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
  tmpreg |= RCC_SYSCLKSource;
  
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Returns the clock source used as system clock.
  * @param  None
  * @retval The clock source used as system clock. The returned value can be one 
  *         of the following values:
  *              - 0x00: HSI used as system clock
  *              - 0x04: HSE used as system clock  
  *              - 0x08: PLL used as system clock
  */
uint8_t RCC_GetSYSCLKSource(void)
{
  return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
}

/**
  * @brief  Configures the AHB clock (HCLK).
  * @note   Depending on the device voltage range, the software has to set correctly
  *         these bits to ensure that the system frequency does not exceed the
  *         maximum allowed frequency (for more details refer to section above
  *         "CPU, AHB and APB busses clocks configuration functions").
  * @param  RCC_SYSCLK: defines the AHB clock divider. This clock is derived from 
  *                     the system clock (SYSCLK).
  *   This parameter can be one of the following values:
  *     @arg RCC_SYSCLK_Div1:   AHB clock = SYSCLK
  *     @arg RCC_SYSCLK_Div2:   AHB clock = SYSCLK/2
  *     @arg RCC_SYSCLK_Div4:   AHB clock = SYSCLK/4
  *     @arg RCC_SYSCLK_Div8:   AHB clock = SYSCLK/8
  *     @arg RCC_SYSCLK_Div16:  AHB clock = SYSCLK/16
  *     @arg RCC_SYSCLK_Div64:  AHB clock = SYSCLK/64
  *     @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
  *     @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
  *     @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
  * @retval None
  */
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_HCLK(RCC_SYSCLK));
  
  tmpreg = RCC->CFGR;
  
  /* Clear HPRE[3:0] bits */
  tmpreg &= ~RCC_CFGR_HPRE;
  
  /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
  tmpreg |= RCC_SYSCLK;
  
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Configures the Low Speed APB clock (PCLK1).
  * @param  RCC_HCLK: defines the APB1 clock divider. This clock is derived from 
  *         the AHB clock (HCLK).
  *   This parameter can be one of the following values:
  *     @arg RCC_HCLK_Div1: APB1 clock = HCLK
  *     @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
  *     @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
  *     @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
  *     @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
  * @retval None
  */
void RCC_PCLK1Config(uint32_t RCC_HCLK)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PCLK(RCC_HCLK));
  
  tmpreg = RCC->CFGR;
  /* Clear PPRE1[2:0] bits */
  tmpreg &= ~RCC_CFGR_PPRE1;
  
  /* Set PPRE1[2:0] bits according to RCC_HCLK value */
  tmpreg |= RCC_HCLK;
  
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Configures the High Speed APB clock (PCLK2).
  * @param  RCC_HCLK: defines the APB2 clock divider. This clock is derived from 
  *         the AHB clock (HCLK).
  *         This parameter can be one of the following values:
  *             @arg RCC_HCLK_Div1: APB2 clock = HCLK
  *             @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
  *             @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
  *             @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
  *             @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
  * @retval None
  */
void RCC_PCLK2Config(uint32_t RCC_HCLK)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PCLK(RCC_HCLK));
  
  tmpreg = RCC->CFGR;
  /* Clear PPRE2[2:0] bits */
  tmpreg &= ~RCC_CFGR_PPRE2;
  /* Set PPRE2[2:0] bits according to RCC_HCLK value */
  tmpreg |= RCC_HCLK << 3;
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Returns the frequencies of the System, AHB, APB2 and APB1 busses clocks.
  * 
  *  @note    This function returns the frequencies of :
  *           System, AHB, APB2 and APB1 busses clocks, ADC1/2/3/4 clocks, 
  *           USART1/2/3/4/5 clocks, I2C1/2 clocks and TIM1/8 Clocks.
  *                         
  * @note     The frequency returned by this function is not the real frequency
  *           in the chip. It is calculated based on the predefined constant and
  *           the source selected by RCC_SYSCLKConfig().
  *                                              
  * @note      If SYSCLK source is HSI, function returns constant HSI_VALUE(*)
  *                                              
  * @note      If SYSCLK source is HSE, function returns constant HSE_VALUE(**)
  *                          
  * @note      If SYSCLK source is PLL, function returns constant HSE_VALUE(**) 
  *             or HSI_VALUE(*) multiplied by the PLL factors.
  *         
  * @note     (*) HSI_VALUE is a constant defined in stm32f30x.h file (default value
  *               8 MHz) but the real value may vary depending on the variations
  *               in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().   
  *    
  * @note     (**) HSE_VALUE is a constant defined in stm32f30x.h file (default value
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
  *                frequency of the crystal used. Otherwise, this function may
  *                return wrong result.
  *                
  * @note     The result of this function could be not correct when using fractional
  *           value for HSE crystal.   
  *             
  * @param  RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold 
  *         the clocks frequencies. 
  *     
  * @note     This function can be used by the user application to compute the 
  *           baudrate for the communication peripherals or configure other parameters.
  * @note     Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
  *           must be called to update the structure's field. Otherwise, any
  *           configuration based on this function will be incorrect.
  *    
  * @retval None
  */
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
  uint32_t tmp = 0, pllmull = 0, pllsource = 0, prediv1factor = 0, presc = 0, pllclk = 0;
  uint32_t apb2presc = 0, ahbpresc = 0;
  
  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;
  
  switch (tmp)
  {
    case 0x00:  /* HSI used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
    case 0x04:  /* HSE used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
      break;
    case 0x08:  /* PLL used as system clock */
      /* Get PLL clock source and multiplication factor ----------------------*/
      pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
      pllmull = ( pllmull >> 18) + 2;
      
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        pllclk = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {
        prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
        /* HSE oscillator clock selected as PREDIV1 clock entry */
        pllclk = (HSE_VALUE / prediv1factor) * pllmull; 
      }
      RCC_Clocks->SYSCLK_Frequency = pllclk;      
      break;
    default: /* HSI used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
  }
    /* Compute HCLK, PCLK clocks frequencies -----------------------------------*/
  /* Get HCLK prescaler */
  tmp = RCC->CFGR & RCC_CFGR_HPRE;
  tmp = tmp >> 4;
  ahbpresc = APBAHBPrescTable[tmp]; 
  /* HCLK clock frequency */
  RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> ahbpresc;

  /* Get PCLK1 prescaler */
  tmp = RCC->CFGR & RCC_CFGR_PPRE1;
  tmp = tmp >> 8;
  presc = APBAHBPrescTable[tmp];
  /* PCLK1 clock frequency */
  RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
  
  /* Get PCLK2 prescaler */
  tmp = RCC->CFGR & RCC_CFGR_PPRE2;
  tmp = tmp >> 11;
  apb2presc = APBAHBPrescTable[tmp];
  /* PCLK2 clock frequency */
  RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> apb2presc;
  
  /* Get ADC12CLK prescaler */
  tmp = RCC->CFGR2 & RCC_CFGR2_ADCPRE12;
  tmp = tmp >> 4;
  presc = ADCPrescTable[tmp & 0x0F];
  if (((tmp & 0x10) != 0) && (presc != 0))
  {
     /* ADC12CLK clock frequency is derived from PLL clock */
     RCC_Clocks->ADC12CLK_Frequency = pllclk / presc;
  }
  else
  {
   /* ADC12CLK clock frequency is AHB clock */
     RCC_Clocks->ADC12CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  
  /* Get ADC34CLK prescaler */
  tmp = RCC->CFGR2 & RCC_CFGR2_ADCPRE34;
  tmp = tmp >> 9;
  presc = ADCPrescTable[tmp & 0x0F];
  if (((tmp & 0x10) != 0) && (presc != 0))
  {
     /* ADC34CLK clock frequency is derived from PLL clock */
     RCC_Clocks->ADC34CLK_Frequency = pllclk / presc;
  }
  else
  {
   /* ADC34CLK clock frequency is AHB clock */
     RCC_Clocks->ADC34CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }

  /* I2C1CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_I2C1SW) != RCC_CFGR3_I2C1SW)
  {
    /* I2C1 Clock is HSI Osc. */
    RCC_Clocks->I2C1CLK_Frequency = HSI_VALUE;
  }
  else
  {
    /* I2C1 Clock is System Clock */
    RCC_Clocks->I2C1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }

  /* I2C2CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_I2C2SW) != RCC_CFGR3_I2C2SW)
  {
    /* I2C2 Clock is HSI Osc. */
    RCC_Clocks->I2C2CLK_Frequency = HSI_VALUE;
  }
  else
  {
    /* I2C2 Clock is System Clock */
    RCC_Clocks->I2C2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }

  /* I2C3CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_I2C3SW) != RCC_CFGR3_I2C3SW)
  {
    /* I2C3 Clock is HSI Osc. */
    RCC_Clocks->I2C3CLK_Frequency = HSI_VALUE;
  }
  else
  {
    /* I2C3 Clock is System Clock */
    RCC_Clocks->I2C3CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
    
    /* TIM1CLK clock frequency */
  if(((RCC->CFGR3 & RCC_CFGR3_TIM1SW) == RCC_CFGR3_TIM1SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
  && (apb2presc == ahbpresc)) 
  {
    /* TIM1 Clock is 2 * pllclk */
    RCC_Clocks->TIM1CLK_Frequency = pllclk * 2;
  }
  else
  {
    /* TIM1 Clock is APB2 clock. */
    RCC_Clocks->TIM1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
  }

    /* TIM1CLK clock frequency */
  if(((RCC->CFGR3 & RCC_CFGR3_HRTIM1SW) == RCC_CFGR3_HRTIM1SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
  && (apb2presc == ahbpresc)) 
  {
    /* HRTIM1 Clock is 2 * pllclk */
    RCC_Clocks->HRTIM1CLK_Frequency = pllclk * 2;
  }
  else
  {
    /* HRTIM1 Clock is APB2 clock. */
    RCC_Clocks->HRTIM1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
  }
  
    /* TIM8CLK clock frequency */
  if(((RCC->CFGR3 & RCC_CFGR3_TIM8SW) == RCC_CFGR3_TIM8SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
  && (apb2presc == ahbpresc))
  {
    /* TIM8 Clock is 2 * pllclk */
    RCC_Clocks->TIM8CLK_Frequency = pllclk * 2;
  }
  else
  {
    /* TIM8 Clock is APB2 clock. */
    RCC_Clocks->TIM8CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
  }

    /* TIM15CLK clock frequency */
  if(((RCC->CFGR3 & RCC_CFGR3_TIM15SW) == RCC_CFGR3_TIM15SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
  && (apb2presc == ahbpresc))
  {
    /* TIM15 Clock is 2 * pllclk */
    RCC_Clocks->TIM15CLK_Frequency = pllclk * 2;
  }
  else
  {
    /* TIM15 Clock is APB2 clock. */
    RCC_Clocks->TIM15CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
  }
    
    /* TIM16CLK clock frequency */
  if(((RCC->CFGR3 & RCC_CFGR3_TIM16SW) == RCC_CFGR3_TIM16SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
  && (apb2presc == ahbpresc))
  {
    /* TIM16 Clock is 2 * pllclk */
    RCC_Clocks->TIM16CLK_Frequency = pllclk * 2;
  }
  else
  {
    /* TIM16 Clock is APB2 clock. */
    RCC_Clocks->TIM16CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
  }

    /* TIM17CLK clock frequency */
  if(((RCC->CFGR3 & RCC_CFGR3_TIM17SW) == RCC_CFGR3_TIM17SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
  && (apb2presc == ahbpresc))
  {
    /* TIM17 Clock is 2 * pllclk */
    RCC_Clocks->TIM17CLK_Frequency = pllclk * 2;
  }
  else
  {
    /* TIM17 Clock is APB2 clock. */
    RCC_Clocks->TIM16CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
  }
    
  /* USART1CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == 0x0)
  {
#if defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F301x8) || defined(STM32F302x8)
    /* USART1 Clock is PCLK1 instead of PCLK2 (limitation described in the 
       STM32F302/01/34 x4/x6/x8 respective erratasheets) */
    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
#else
    /* USART Clock is PCLK2 */
    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
#endif  
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_0)
  {
    /* USART Clock is System Clock */
    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_1)
  {
    /* USART Clock is LSE Osc. */
    RCC_Clocks->USART1CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW)
  {
    /* USART Clock is HSI Osc. */
    RCC_Clocks->USART1CLK_Frequency = HSI_VALUE;
  }

  /* USART2CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == 0x0)
  {
    /* USART Clock is PCLK */
    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_0)
  {
    /* USART Clock is System Clock */
    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_1)
  {
    /* USART Clock is LSE Osc. */
    RCC_Clocks->USART2CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW)
  {
    /* USART Clock is HSI Osc. */
    RCC_Clocks->USART2CLK_Frequency = HSI_VALUE;
  }    

  /* USART3CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == 0x0)
  {
    /* USART Clock is PCLK */
    RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_0)
  {
    /* USART Clock is System Clock */
    RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_1)
  {
    /* USART Clock is LSE Osc. */
    RCC_Clocks->USART3CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW)
  {
    /* USART Clock is HSI Osc. */
    RCC_Clocks->USART3CLK_Frequency = HSI_VALUE;
  }
  
    /* UART4CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == 0x0)
  {
    /* USART Clock is PCLK */
    RCC_Clocks->UART4CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW_0)
  {
    /* USART Clock is System Clock */
    RCC_Clocks->UART4CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW_1)
  {
    /* USART Clock is LSE Osc. */
    RCC_Clocks->UART4CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW)
  {
    /* USART Clock is HSI Osc. */
    RCC_Clocks->UART4CLK_Frequency = HSI_VALUE;
  }   
  
  /* UART5CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == 0x0)
  {
    /* USART Clock is PCLK */
    RCC_Clocks->UART5CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW_0)
  {
    /* USART Clock is System Clock */
    RCC_Clocks->UART5CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW_1)
  {
    /* USART Clock is LSE Osc. */
    RCC_Clocks->UART5CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW)
  {
    /* USART Clock is HSI Osc. */
    RCC_Clocks->UART5CLK_Frequency = HSI_VALUE;
  } 
}

/**
  * @}
  */

/** @defgroup RCC_Group3 Peripheral clocks configuration functions
 *  @brief   Peripheral clocks configuration functions 
 *
@verbatim   
 ===============================================================================
            ##### Peripheral clocks configuration functions #####
 ===============================================================================  
    [..] This section provide functions allowing to configure the Peripheral clocks. 
         (#) The RTC clock which is derived from the LSE, LSI or  HSE_Div32 
             (HSE divided by 32).
         (#) After restart from Reset or wakeup from STANDBY, all peripherals are 
             off except internal SRAM, Flash and SWD. Before to start using 
             a peripheral you have to enable its interface clock. You can do this 
             using RCC_AHBPeriphClockCmd(), RCC_APB2PeriphClockCmd() 
             and RCC_APB1PeriphClockCmd() functions.
         (#) To reset the peripherals configuration (to the default state after 
             device reset) you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() 
             and RCC_APB1PeriphResetCmd() functions.
@endverbatim
  * @{
  */

/**
  * @brief  Configures the ADC clock (ADCCLK).
  * @param  RCC_PLLCLK: defines the ADC clock divider. This clock is derived from 
  *         the PLL Clock.
  *   This parameter can be one of the following values:
  *     @arg RCC_ADC12PLLCLK_OFF: ADC12 clock disabled
  *     @arg RCC_ADC12PLLCLK_Div1: ADC12 clock = PLLCLK/1
  *     @arg RCC_ADC12PLLCLK_Div2: ADC12 clock = PLLCLK/2
  *     @arg RCC_ADC12PLLCLK_Div4: ADC12 clock = PLLCLK/4
  *     @arg RCC_ADC12PLLCLK_Div6: ADC12 clock = PLLCLK/6
  *     @arg RCC_ADC12PLLCLK_Div8: ADC12 clock = PLLCLK/8
  *     @arg RCC_ADC12PLLCLK_Div10: ADC12 clock = PLLCLK/10
  *     @arg RCC_ADC12PLLCLK_Div12: ADC12 clock = PLLCLK/12
  *     @arg RCC_ADC12PLLCLK_Div16: ADC12 clock = PLLCLK/16
  *     @arg RCC_ADC12PLLCLK_Div32: ADC12 clock = PLLCLK/32
  *     @arg RCC_ADC12PLLCLK_Div64: ADC12 clock = PLLCLK/64
  *     @arg RCC_ADC12PLLCLK_Div128: ADC12 clock = PLLCLK/128
  *     @arg RCC_ADC12PLLCLK_Div256: ADC12 clock = PLLCLK/256
  *     @arg RCC_ADC34PLLCLK_OFF: ADC34 clock disabled
  *     @arg RCC_ADC34PLLCLK_Div1: ADC34 clock = PLLCLK/1
  *     @arg RCC_ADC34PLLCLK_Div2: ADC34 clock = PLLCLK/2
  *     @arg RCC_ADC34PLLCLK_Div4: ADC34 clock = PLLCLK/4
  *     @arg RCC_ADC34PLLCLK_Div6: ADC34 clock = PLLCLK/6
  *     @arg RCC_ADC34PLLCLK_Div8: ADC34 clock = PLLCLK/8
  *     @arg RCC_ADC34PLLCLK_Div10: ADC34 clock = PLLCLK/10
  *     @arg RCC_ADC34PLLCLK_Div12: ADC34 clock = PLLCLK/12
  *     @arg RCC_ADC34PLLCLK_Div16: ADC34 clock = PLLCLK/16
  *     @arg RCC_ADC34PLLCLK_Div32: ADC34 clock = PLLCLK/32
  *     @arg RCC_ADC34PLLCLK_Div64: ADC34 clock = PLLCLK/64       
  *     @arg RCC_ADC34PLLCLK_Div128: ADC34 clock = PLLCLK/128                                  
  *     @arg RCC_ADC34PLLCLK_Div256: ADC34 clock = PLLCLK/256
  * @retval None
  */
void RCC_ADCCLKConfig(uint32_t RCC_PLLCLK)
{
  uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_ADCCLK(RCC_PLLCLK));

  tmp = (RCC_PLLCLK >> 28);
  
  /* Clears ADCPRE34 bits */
  if (tmp != 0)
  {
    RCC->CFGR2 &= ~RCC_CFGR2_ADCPRE34;
  }
   /* Clears ADCPRE12 bits */
  else
  {
    RCC->CFGR2 &= ~RCC_CFGR2_ADCPRE12;
  }
  /* Set ADCPRE bits according to RCC_PLLCLK value */
  RCC->CFGR2 |= RCC_PLLCLK;
}

/**
  * @brief  Configures the I2C clock (I2CCLK).
  * @param  RCC_I2CCLK: defines the I2C clock source. This clock is derived 
  *         from the HSI or System clock.
  *   This parameter can be one of the following values:
  *     @arg RCC_I2CxCLK_HSI: I2Cx clock = HSI
  *     @arg RCC_I2CxCLK_SYSCLK: I2Cx clock = System Clock
  *          (x can be 1 or 2 or 3).  
  * @retval None
  */
void RCC_I2CCLKConfig(uint32_t RCC_I2CCLK)
{ 
  uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_I2CCLK(RCC_I2CCLK));

  tmp = (RCC_I2CCLK >> 28);
  
  /* Clear I2CSW bit */
    switch (tmp)
  {
    case 0x00: 
      RCC->CFGR3 &= ~RCC_CFGR3_I2C1SW;
      break;
    case 0x01:
      RCC->CFGR3 &= ~RCC_CFGR3_I2C2SW;
      break;
    case 0x02:
      RCC->CFGR3 &= ~RCC_CFGR3_I2C3SW;
      break;
    default:
      break;
  }
  
  /* Set I2CSW bits according to RCC_I2CCLK value */
  RCC->CFGR3 |= RCC_I2CCLK;
}

/**
  * @brief  Configures the TIMx clock sources(TIMCLK).
  * @note     The configuration of the TIMx clock source is only possible when the 
  *           SYSCLK = PLL and HCLK and PCLK2 clocks are not divided in respect to SYSCLK
  * @note     If one of the previous conditions is missed, the TIM clock source 
  *           configuration is lost and calling again this function becomes mandatory.  
  * @param  RCC_TIMCLK: defines the TIMx clock source.
  *   This parameter can be one of the following values:
  *     @arg RCC_TIMxCLK_HCLK: TIMx clock = APB high speed clock (doubled frequency
  *          when prescaled)
  *     @arg RCC_TIMxCLK_PLLCLK: TIMx clock = PLL output (running up to 144 MHz)
  *          (x can be 1, 8, 15, 16, 17).
  * @retval None
  */
void RCC_TIMCLKConfig(uint32_t RCC_TIMCLK)
{ 
  uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_TIMCLK(RCC_TIMCLK));

  tmp = (RCC_TIMCLK >> 28);
  
  /* Clear TIMSW bit */
  
  switch (tmp)
  {
    case 0x00: 
      RCC->CFGR3 &= ~RCC_CFGR3_TIM1SW;
      break;
    case 0x01:
      RCC->CFGR3 &= ~RCC_CFGR3_TIM8SW;
      break;
    case 0x02:
      RCC->CFGR3 &= ~RCC_CFGR3_TIM15SW;
      break;
    case 0x03:
      RCC->CFGR3 &= ~RCC_CFGR3_TIM16SW;
      break;
    case 0x04:
      RCC->CFGR3 &= ~RCC_CFGR3_TIM17SW;
      break;
    default:
      break;
  }
  
  /* Set I2CSW bits according to RCC_TIMCLK value */
  RCC->CFGR3 |= RCC_TIMCLK;
}

/**
  * @brief  Configures the HRTIM1 clock sources(HRTIM1CLK).
  * @note     The configuration of the HRTIM1 clock source is only possible when the 
  *           SYSCLK = PLL and HCLK and PCLK2 clocks are not divided in respect to SYSCLK
  * @note     If one of the previous conditions is missed, the TIM clock source 
  *           configuration is lost and calling again this function becomes mandatory.  
  * @param  RCC_HRTIMCLK: defines the TIMx clock source.
  *   This parameter can be one of the following values:
  *     @arg RCC_HRTIM1CLK_HCLK: TIMx clock = APB high speed clock (doubled frequency
  *          when prescaled)
  *     @arg RCC_HRTIM1CLK_PLLCLK: TIMx clock = PLL output (running up to 144 MHz)
  *          (x can be 1 or 8).
  * @retval None
  */
void RCC_HRTIM1CLKConfig(uint32_t RCC_HRTIMCLK)
{ 
  /* Check the parameters */
  assert_param(IS_RCC_HRTIMCLK(RCC_HRTIMCLK));
  
  /* Clear HRTIMSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_HRTIM1SW;

  /* Set HRTIMSW bits according to RCC_HRTIMCLK value */
  RCC->CFGR3 |= RCC_HRTIMCLK;
}

/**
  * @brief  Configures the USART clock (USARTCLK).
  * @param  RCC_USARTCLK: defines the USART clock source. This clock is derived 
  *         from the HSI or System clock.
  *   This parameter can be one of the following values:
  *     @arg RCC_USARTxCLK_PCLK: USART clock = APB Clock (PCLK)
  *     @arg RCC_USARTxCLK_SYSCLK: USART clock = System Clock
  *     @arg RCC_USARTxCLK_LSE: USART clock = LSE Clock
  *     @arg RCC_USARTxCLK_HSI: USART clock = HSI Clock
  *          (x can be 1, 2, 3, 4 or 5).  
  * @retval None
  */
void RCC_USARTCLKConfig(uint32_t RCC_USARTCLK)
{ 
  uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_USARTCLK(RCC_USARTCLK));

  tmp = (RCC_USARTCLK >> 28);

  /* Clear USARTSW[1:0] bit */
  switch (tmp)
  {
    case 0x01:  /* clear USART1SW */
      RCC->CFGR3 &= ~RCC_CFGR3_USART1SW;
      break;
    case 0x02:  /* clear USART2SW */
      RCC->CFGR3 &= ~RCC_CFGR3_USART2SW;
      break;
    case 0x03:  /* clear USART3SW */
      RCC->CFGR3 &= ~RCC_CFGR3_USART3SW;
      break;
    case 0x04:  /* clear UART4SW */
      RCC->CFGR3 &= ~RCC_CFGR3_UART4SW;
      break;
    case 0x05:  /* clear UART5SW */
      RCC->CFGR3 &= ~RCC_CFGR3_UART5SW;
      break;
    default:
      break;
  }

  /* Set USARTSW bits according to RCC_USARTCLK value */
  RCC->CFGR3 |= RCC_USARTCLK;
}

/**
  * @brief  Configures the USB clock (USBCLK).
  * @param  RCC_USBCLKSource: specifies the USB clock source. This clock is 
  *   derived from the PLL output.
  *   This parameter can be one of the following values:
  *     @arg RCC_USBCLKSource_PLLCLK_1Div5: PLL clock divided by 1,5 selected as USB 
  *                                     clock source
  *     @arg RCC_USBCLKSource_PLLCLK_Div1: PLL clock selected as USB clock source
  * @retval None
  */
void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource)
{
  /* Check the parameters */
  assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource));

  *(__IO uint32_t *) CFGR_USBPRE_BB = RCC_USBCLKSource;
}

/**
  * @brief  Configures the RTC clock (RTCCLK).
  * @note     As the RTC clock configuration bits are in the Backup domain and write
  *           access is denied to this domain after reset, you have to enable write
  *           access using PWR_BackupAccessCmd(ENABLE) function before to configure
  *           the RTC clock source (to be done once after reset).    
  * @note     Once the RTC clock is configured it can't be changed unless the RTC
  *           is reset using RCC_BackupResetCmd function, or by a Power On Reset (POR)
  *             
  * @param  RCC_RTCCLKSource: specifies the RTC clock source.
  *   This parameter can be one of the following values:
  *     @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
  *     @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
  *     @arg RCC_RTCCLKSource_HSE_Div32: HSE divided by 32 selected as RTC clock
  *       
  * @note     If the LSE or LSI is used as RTC clock source, the RTC continues to
  *           work in STOP and STANDBY modes, and can be used as wakeup source.
  *           However, when the HSE clock is used as RTC clock source, the RTC
  *           cannot be used in STOP and STANDBY modes.             
  * @note     The maximum input clock frequency for RTC is 2MHz (when using HSE as
  *           RTC clock source).             
  * @retval None
  */
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
  /* Check the parameters */
  assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
  
  /* Select the RTC clock source */
  RCC->BDCR |= RCC_RTCCLKSource;
}

/**
  * @brief  Configures the I2S clock source (I2SCLK).
  * @note   This function must be called before enabling the SPI2 and SPI3 clocks.
  * @param  RCC_I2SCLKSource: specifies the I2S clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_I2S2CLKSource_SYSCLK: SYSCLK clock used as I2S clock source
  *            @arg RCC_I2S2CLKSource_Ext: External clock mapped on the I2S_CKIN pin
  *                                        used as I2S clock source
  * @retval None
  */
void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource)
{
  /* Check the parameters */
  assert_param(IS_RCC_I2SCLK_SOURCE(RCC_I2SCLKSource));

  *(__IO uint32_t *) CFGR_I2SSRC_BB = RCC_I2SCLKSource;
}

/**
  * @brief  Enables or disables the RTC clock.
  * @note   This function must be used only after the RTC clock source was selected
  *         using the RCC_RTCCLKConfig function.
  * @param  NewState: new state of the RTC clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_RTCCLKCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  *(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState;
}

/**
  * @brief  Forces or releases the Backup domain reset.
  * @note   This function resets the RTC peripheral (including the backup registers)
  *         and the RTC clock source selection in RCC_BDCR register.
  * @param  NewState: new state of the Backup domain reset.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_BackupResetCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
}

/**
  * @brief  Enables or disables the AHB peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.    
  * @param  RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_AHBPeriph_GPIOA
  *     @arg RCC_AHBPeriph_GPIOB
  *     @arg RCC_AHBPeriph_GPIOC  
  *     @arg RCC_AHBPeriph_GPIOD
  *     @arg RCC_AHBPeriph_GPIOE  
  *     @arg RCC_AHBPeriph_GPIOF
  *     @arg RCC_AHBPeriph_TS
  *     @arg RCC_AHBPeriph_CRC
  *     @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode)  
  *     @arg RCC_AHBPeriph_SRAM
  *     @arg RCC_AHBPeriph_DMA2
  *     @arg RCC_AHBPeriph_DMA1
  *     @arg RCC_AHBPeriph_ADC34
  *     @arg RCC_AHBPeriph_ADC12      
  * @param  NewState: new state of the specified peripheral clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->AHBENR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBENR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Enables or disables the High Speed APB (APB2) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_APB2Periph_SYSCFG
  *     @arg RCC_APB2Periph_SPI1
  *     @arg RCC_APB2Periph_USART1
  *     @arg RCC_APB2Periph_TIM15
  *     @arg RCC_APB2Periph_TIM16
  *     @arg RCC_APB2Periph_TIM17
  *     @arg RCC_APB2Periph_TIM1       
  *     @arg RCC_APB2Periph_TIM8
  *     @arg RCC_APB2Periph_HRTIM1  
  * @param  NewState: new state of the specified peripheral clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2ENR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2ENR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Enables or disables the Low Speed APB (APB1) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_APB1Periph_TIM2
  *     @arg RCC_APB1Periph_TIM3
  *     @arg RCC_APB1Periph_TIM4
  *     @arg RCC_APB1Periph_TIM6
  *     @arg RCC_APB1Periph_TIM7
  *     @arg RCC_APB1Periph_WWDG
  *     @arg RCC_APB1Periph_SPI2
  *     @arg RCC_APB1Periph_SPI3  
  *     @arg RCC_APB1Periph_USART2
  *     @arg RCC_APB1Periph_USART3
  *     @arg RCC_APB1Periph_UART4 
  *     @arg RCC_APB1Periph_UART5     
  *     @arg RCC_APB1Periph_I2C1
  *     @arg RCC_APB1Periph_I2C2
  *     @arg RCC_APB1Periph_USB
  *     @arg RCC_APB1Periph_CAN1
  *     @arg RCC_APB1Periph_PWR
  *     @arg RCC_APB1Periph_DAC1
  *     @arg RCC_APB1Periph_DAC2  
  * @param  NewState: new state of the specified peripheral clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1ENR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1ENR &= ~RCC_APB1Periph;
  }
}

/**
  * @brief  Forces or releases AHB peripheral reset.
  * @param  RCC_AHBPeriph: specifies the AHB peripheral to reset.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_AHBPeriph_GPIOA
  *     @arg RCC_AHBPeriph_GPIOB
  *     @arg RCC_AHBPeriph_GPIOC  
  *     @arg RCC_AHBPeriph_GPIOD
  *     @arg RCC_AHBPeriph_GPIOE  
  *     @arg RCC_AHBPeriph_GPIOF
  *     @arg RCC_AHBPeriph_TS
  *     @arg RCC_AHBPeriph_ADC34
  *     @arg RCC_AHBPeriph_ADC12    
  * @param  NewState: new state of the specified peripheral reset.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB_RST_PERIPH(RCC_AHBPeriph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHBRSTR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBRSTR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Forces or releases High Speed APB (APB2) peripheral reset.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to reset.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_APB2Periph_SYSCFG
  *     @arg RCC_APB2Periph_SPI1
  *     @arg RCC_APB2Periph_USART1
  *     @arg RCC_APB2Periph_TIM15
  *     @arg RCC_APB2Periph_TIM16
  *     @arg RCC_APB2Periph_TIM17
  *     @arg RCC_APB2Periph_TIM1       
  *     @arg RCC_APB2Periph_TIM8 
  *     @arg RCC_APB2Periph_HRTIM1       
  * @param  NewState: new state of the specified peripheral reset.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2RSTR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2RSTR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Forces or releases Low Speed APB (APB1) peripheral reset.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to reset.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_APB1Periph_TIM2
  *     @arg RCC_APB1Periph_TIM3
  *     @arg RCC_APB1Periph_TIM4
  *     @arg RCC_APB1Periph_TIM6
  *     @arg RCC_APB1Periph_TIM7
  *     @arg RCC_APB1Periph_WWDG
  *     @arg RCC_APB1Periph_SPI2
  *     @arg RCC_APB1Periph_SPI3  
  *     @arg RCC_APB1Periph_USART2
  *     @arg RCC_APB1Periph_USART3
  *     @arg RCC_APB1Periph_UART4
  *     @arg RCC_APB1Periph_UART5      
  *     @arg RCC_APB1Periph_I2C1
  *     @arg RCC_APB1Periph_I2C2
  *     @arg RCC_APB1Periph_I2C3
  *     @arg RCC_APB1Periph_USB
  *     @arg RCC_APB1Periph_CAN1
  *     @arg RCC_APB1Periph_PWR
  *     @arg RCC_APB1Periph_DAC
  * @param  NewState: new state of the specified peripheral clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1RSTR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1RSTR &= ~RCC_APB1Periph;
  }
}

/**
  * @}
  */

/** @defgroup RCC_Group4 Interrupts and flags management functions
 *  @brief   Interrupts and flags management functions 
 *
@verbatim   
 ===============================================================================
            ##### Interrupts and flags management functions #####
 ===============================================================================  

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified RCC interrupts.
  * @note   The CSS interrupt doesn't have an enable bit; once the CSS is enabled
  *         and if the HSE clock fails, the CSS interrupt occurs and an NMI is
  *         automatically generated. The NMI will be executed indefinitely, and 
  *         since NMI has higher priority than any other IRQ (and main program)
  *         the application will be stacked in the NMI ISR unless the CSS interrupt
  *         pending bit is cleared.
  * @param  RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_IT_LSIRDY: LSI ready interrupt
  *     @arg RCC_IT_LSERDY: LSE ready interrupt
  *     @arg RCC_IT_HSIRDY: HSI ready interrupt
  *     @arg RCC_IT_HSERDY: HSE ready interrupt
  *     @arg RCC_IT_PLLRDY: PLL ready interrupt
  * @param  NewState: new state of the specified RCC interrupts.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_IT(RCC_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to enable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
  }
  else
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to disable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
  }
}

/**
  * @brief  Checks whether the specified RCC flag is set or not.
  * @param  RCC_FLAG: specifies the flag to check.
  *   This parameter can be one of the following values:
  *     @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready  
  *     @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
  *     @arg RCC_FLAG_PLLRDY: PLL clock ready
  *     @arg RCC_FLAG_MCOF: MCO Flag  
  *     @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
  *     @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
  *     @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset 
  *     @arg RCC_FLAG_PINRST: Pin reset
  *     @arg RCC_FLAG_PORRST: POR/PDR reset
  *     @arg RCC_FLAG_SFTRST: Software reset
  *     @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
  *     @arg RCC_FLAG_WWDGRST: Window Watchdog reset
  *     @arg RCC_FLAG_LPWRRST: Low Power reset
  * @retval The new state of RCC_FLAG (SET or RESET).
  */
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
  uint32_t tmp = 0;
  uint32_t statusreg = 0;
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_FLAG(RCC_FLAG));

  /* Get the RCC register index */
  tmp = RCC_FLAG >> 5;

   if (tmp == 0)               /* The flag to check is in CR register */
  {
    statusreg = RCC->CR;
  }
  else if (tmp == 1)          /* The flag to check is in BDCR register */
  {
    statusreg = RCC->BDCR;
  }
  else if (tmp == 4)          /* The flag to check is in CFGR register */
  {
    statusreg = RCC->CFGR;
  }
  else                       /* The flag to check is in CSR register */
  {
    statusreg = RCC->CSR;
  }

  /* Get the flag position */
  tmp = RCC_FLAG & FLAG_MASK;

  if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the flag status */
  return bitstatus;
}

/**
  * @brief  Clears the RCC reset flags.
  *         The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST, 
  *         RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST.
  * @param  None
  * @retval None
  */
void RCC_ClearFlag(void)
{
  /* Set RMVF bit to clear the reset flags */
  RCC->CSR |= RCC_CSR_RMVF;
}

/**
  * @brief  Checks whether the specified RCC interrupt has occurred or not.
  * @param  RCC_IT: specifies the RCC interrupt source to check.
  *   This parameter can be one of the following values:
  *     @arg RCC_IT_LSIRDY: LSI ready interrupt
  *     @arg RCC_IT_LSERDY: LSE ready interrupt
  *     @arg RCC_IT_HSIRDY: HSI ready interrupt
  *     @arg RCC_IT_HSERDY: HSE ready interrupt
  *     @arg RCC_IT_PLLRDY: PLL ready interrupt
  *     @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval The new state of RCC_IT (SET or RESET).
  */
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
  ITStatus bitstatus = RESET;
  
  /* Check the parameters */
  assert_param(IS_RCC_GET_IT(RCC_IT));
  
  /* Check the status of the specified RCC interrupt */
  if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the RCC_IT status */
  return  bitstatus;
}

/**
  * @brief  Clears the RCC's interrupt pending bits.
  * @param  RCC_IT: specifies the interrupt pending bit to clear.
  *   This parameter can be any combination of the following values:
  *     @arg RCC_IT_LSIRDY: LSI ready interrupt
  *     @arg RCC_IT_LSERDY: LSE ready interrupt
  *     @arg RCC_IT_HSIRDY: HSI ready interrupt
  *     @arg RCC_IT_HSERDY: HSE ready interrupt
  *     @arg RCC_IT_PLLRDY: PLL ready interrupt
  *     @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval None
  */
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
  /* Check the parameters */
  assert_param(IS_RCC_CLEAR_IT(RCC_IT));
  
  /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
     pending bits */
  *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/