summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/cmsis/TARGET_STM/TARGET_STM32F3XX/stm32f30x_can.c
blob: 759ce9836ef87d6520e7c0daaf43126fcb76516c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
/**
  ******************************************************************************
  * @file    stm32f30x_can.c
  * @author  MCD Application Team
  * @version V1.1.0
  * @date    27-February-2014
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Controller area network (CAN) peripheral:           
  *           + Initialization and Configuration 
  *           + CAN Frames Transmission 
  *           + CAN Frames Reception    
  *           + Operation modes switch  
  *           + Error management          
  *           + Interrupts and flags        
  *         
  @verbatim
                               
 ===============================================================================      
                      ##### How to use this driver #####
 ===============================================================================                
    [..]
    (#) Enable the CAN controller interface clock using 
        RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);      
    (#) CAN pins configuration:
        (++) Enable the clock for the CAN GPIOs using the following function:
             RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOx, ENABLE);   
        (++) Connect the involved CAN pins to AF9 using the following function 
             GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_CANx); 
        (++) Configure these CAN pins in alternate function mode by calling
             the function  GPIO_Init();
    (#) Initialise and configure the CAN using CAN_Init() and 
        CAN_FilterInit() functions.   
    (#) Transmit the desired CAN frame using CAN_Transmit() function.
    (#) Check the transmission of a CAN frame using CAN_TransmitStatus() function.
    (#) Cancel the transmission of a CAN frame using CAN_CancelTransmit() function.  
    (#) Receive a CAN frame using CAN_Recieve() function.
    (#) Release the receive FIFOs using CAN_FIFORelease() function.
    (#) Return the number of pending received frames using CAN_MessagePending() function.            
    (#) To control CAN events you can use one of the following two methods:
        (++) Check on CAN flags using the CAN_GetFlagStatus() function.  
        (++) Use CAN interrupts through the function CAN_ITConfig() at initialization 
             phase and CAN_GetITStatus() function into interrupt routines to check 
             if the event has occurred or not.
             After checking on a flag you should clear it using CAN_ClearFlag()
             function. And after checking on an interrupt event you should clear it 
             using CAN_ClearITPendingBit() function.            
                 
  @endverbatim
  *       
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f30x_can.h"
#include "stm32f30x_rcc.h"

/** @addtogroup STM32F30x_StdPeriph_Driver
  * @{
  */

/** @defgroup CAN 
  * @brief CAN driver modules
  * @{
  */ 
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/* CAN Master Control Register bits */
#define MCR_DBF           ((uint32_t)0x00010000) /* software master reset */

/* CAN Mailbox Transmit Request */
#define TMIDxR_TXRQ       ((uint32_t)0x00000001) /* Transmit mailbox request */

/* CAN Filter Master Register bits */
#define FMR_FINIT         ((uint32_t)0x00000001) /* Filter init mode */

/* Time out for INAK bit */
#define INAK_TIMEOUT      ((uint32_t)0x00FFFFFF)
/* Time out for SLAK bit */
#define SLAK_TIMEOUT      ((uint32_t)0x00FFFFFF)

/* Flags in TSR register */
#define CAN_FLAGS_TSR     ((uint32_t)0x08000000) 
/* Flags in RF1R register */
#define CAN_FLAGS_RF1R    ((uint32_t)0x04000000) 
/* Flags in RF0R register */
#define CAN_FLAGS_RF0R    ((uint32_t)0x02000000) 
/* Flags in MSR register */
#define CAN_FLAGS_MSR     ((uint32_t)0x01000000) 
/* Flags in ESR register */
#define CAN_FLAGS_ESR     ((uint32_t)0x00F00000) 

/* Mailboxes definition */
#define CAN_TXMAILBOX_0   ((uint8_t)0x00)
#define CAN_TXMAILBOX_1   ((uint8_t)0x01)
#define CAN_TXMAILBOX_2   ((uint8_t)0x02) 

#define CAN_MODE_MASK     ((uint32_t) 0x00000003)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);

/** @defgroup CAN_Private_Functions
  * @{
  */

/** @defgroup CAN_Group1 Initialization and Configuration functions
 *  @brief    Initialization and Configuration functions 
 *
@verbatim    
 ===============================================================================
              ##### Initialization and Configuration functions #####
 ===============================================================================  
    [..] This section provides functions allowing to: 
         (+) Initialize the CAN peripherals : Prescaler, operating mode, the maximum 
             number of time quanta to perform resynchronization, the number of time 
             quanta in Bit Segment 1 and 2 and many other modes. 
         (+) Configure the CAN reception filter.                                      
         (+) Select the start bank filter for slave CAN.
         (+) Enable or disable the Debug Freeze mode for CAN.
         (+) Enable or disable the CAN Time Trigger Operation communication mode.
   
@endverbatim
  * @{
  */
  
/**
  * @brief  Deinitializes the CAN peripheral registers to their default reset values.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @retval None.
  */
void CAN_DeInit(CAN_TypeDef* CANx)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
 
  /* Enable CAN1 reset state */
  RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
  /* Release CAN1 from reset state */
  RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
}

/**
  * @brief  Initializes the CAN peripheral according to the specified
  *         parameters in the CAN_InitStruct.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @param  CAN_InitStruct: pointer to a CAN_InitTypeDef structure that contains
  *         the configuration information for the CAN peripheral.
  * @retval Constant indicates initialization succeed which will be 
  *         CAN_InitStatus_Failed or CAN_InitStatus_Success.
  */
uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
{
  uint8_t InitStatus = CAN_InitStatus_Failed;
  __IO uint32_t wait_ack = 0x00000000;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
  assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
  assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
  assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
  assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
  assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));

  /* Exit from sleep mode */
  CANx->MCR &= (~(uint32_t)CAN_MCR_SLEEP);

  /* Request initialisation */
  CANx->MCR |= CAN_MCR_INRQ ;

  /* Wait the acknowledge */
  while (((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
  {
    wait_ack++;
  }

  /* Check acknowledge */
  if ((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
  {
    InitStatus = CAN_InitStatus_Failed;
  }
  else 
  {
    /* Set the time triggered communication mode */
    if (CAN_InitStruct->CAN_TTCM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_TTCM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_TTCM;
    }

    /* Set the automatic bus-off management */
    if (CAN_InitStruct->CAN_ABOM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_ABOM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_ABOM;
    }

    /* Set the automatic wake-up mode */
    if (CAN_InitStruct->CAN_AWUM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_AWUM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_AWUM;
    }

    /* Set the no automatic retransmission */
    if (CAN_InitStruct->CAN_NART == ENABLE)
    {
      CANx->MCR |= CAN_MCR_NART;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_NART;
    }

    /* Set the receive FIFO locked mode */
    if (CAN_InitStruct->CAN_RFLM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_RFLM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_RFLM;
    }

    /* Set the transmit FIFO priority */
    if (CAN_InitStruct->CAN_TXFP == ENABLE)
    {
      CANx->MCR |= CAN_MCR_TXFP;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_TXFP;
    }

    /* Set the bit timing register */
    CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | \
                ((uint32_t)CAN_InitStruct->CAN_SJW << 24) | \
                ((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | \
                ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) | \
               ((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);

    /* Request leave initialisation */
    CANx->MCR &= ~(uint32_t)CAN_MCR_INRQ;

   /* Wait the acknowledge */
   wait_ack = 0;

   while (((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
   {
     wait_ack++;
   }

    /* ...and check acknowledged */
    if ((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
    {
      InitStatus = CAN_InitStatus_Failed;
    }
    else
    {
      InitStatus = CAN_InitStatus_Success ;
    }
  }

  /* At this step, return the status of initialization */
  return InitStatus;
}

/**
  * @brief  Configures the CAN reception filter according to the specified
  *         parameters in the CAN_FilterInitStruct.
  * @param  CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef structure that
  *         contains the configuration information.
  * @retval None
  */
void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
{
  uint32_t filter_number_bit_pos = 0;
  /* Check the parameters */
  assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
  assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
  assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
  assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
  assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));

  filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber;

  /* Initialisation mode for the filter */
  CAN1->FMR |= FMR_FINIT;

  /* Filter Deactivation */
  CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;

  /* Filter Scale */
  if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
  {
    /* 16-bit scale for the filter */
    CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;

    /* First 16-bit identifier and First 16-bit mask */
    /* Or First 16-bit identifier and Second 16-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = 
       ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);

    /* Second 16-bit identifier and Second 16-bit mask */
    /* Or Third 16-bit identifier and Fourth 16-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 = 
       ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
  }

  if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
  {
    /* 32-bit scale for the filter */
    CAN1->FS1R |= filter_number_bit_pos;
    /* 32-bit identifier or First 32-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = 
       ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
    /* 32-bit mask or Second 32-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 = 
       ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
  }

  /* Filter Mode */
  if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
  {
    /*Id/Mask mode for the filter*/
    CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
  }
  else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
  {
    /*Identifier list mode for the filter*/
    CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
  }

  /* Filter FIFO assignment */
  if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0)
  {
    /* FIFO 0 assignation for the filter */
    CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
  }

  if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1)
  {
    /* FIFO 1 assignation for the filter */
    CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
  }
  
  /* Filter activation */
  if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
  {
    CAN1->FA1R |= filter_number_bit_pos;
  }

  /* Leave the initialisation mode for the filter */
  CAN1->FMR &= ~FMR_FINIT;
}

/**
  * @brief  Fills each CAN_InitStruct member with its default value.
  * @param  CAN_InitStruct: pointer to a CAN_InitTypeDef structure which ill be initialized.
  * @retval None
  */
void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
{
  /* Reset CAN init structure parameters values */
  
  /* Initialize the time triggered communication mode */
  CAN_InitStruct->CAN_TTCM = DISABLE;
  
  /* Initialize the automatic bus-off management */
  CAN_InitStruct->CAN_ABOM = DISABLE;
  
  /* Initialize the automatic wake-up mode */
  CAN_InitStruct->CAN_AWUM = DISABLE;
  
  /* Initialize the no automatic retransmission */
  CAN_InitStruct->CAN_NART = DISABLE;
  
  /* Initialize the receive FIFO locked mode */
  CAN_InitStruct->CAN_RFLM = DISABLE;
  
  /* Initialize the transmit FIFO priority */
  CAN_InitStruct->CAN_TXFP = DISABLE;
  
  /* Initialize the CAN_Mode member */
  CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
  
  /* Initialize the CAN_SJW member */
  CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
  
  /* Initialize the CAN_BS1 member */
  CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
  
  /* Initialize the CAN_BS2 member */
  CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
  
  /* Initialize the CAN_Prescaler member */
  CAN_InitStruct->CAN_Prescaler = 1;
}

/**
  * @brief  Select the start bank filter for slave CAN.
  * @param  CAN_BankNumber: Select the start slave bank filter from 1..27.
  * @retval None
  */
void CAN_SlaveStartBank(uint8_t CAN_BankNumber) 
{
  /* Check the parameters */
  assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
  
  /* Enter Initialisation mode for the filter */
  CAN1->FMR |= FMR_FINIT;
  
  /* Select the start slave bank */
  CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
  CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
  
  /* Leave Initialisation mode for the filter */
  CAN1->FMR &= ~FMR_FINIT;
}

/**
  * @brief  Enables or disables the DBG Freeze for CAN.
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  NewState: new state of the CAN peripheral. 
  *          This parameter can be: ENABLE (CAN reception/transmission is frozen
  *          during debug. Reception FIFOs can still be accessed/controlled normally) 
  *          or DISABLE (CAN is working during debug).
  * @retval None
  */
void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable Debug Freeze  */
    CANx->MCR |= MCR_DBF;
  }
  else
  {
    /* Disable Debug Freeze */
    CANx->MCR &= ~MCR_DBF;
  }
}

/**
  * @brief  Enables or disables the CAN Time TriggerOperation communication mode.
  * @note   DLC must be programmed as 8 in order Time Stamp (2 bytes) to be 
  *         sent over the CAN bus.  
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  NewState: Mode new state. This parameter can be: ENABLE or DISABLE.
  *         When enabled, Time stamp (TIME[15:0]) value is  sent in the last two
  *         data bytes of the 8-byte message: TIME[7:0] in data byte 6 and TIME[15:8] 
  *         in data byte 7. 
  * @retval None
  */
void CAN_TTComModeCmd(CAN_TypeDef* CANx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the TTCM mode */
    CANx->MCR |= CAN_MCR_TTCM;

    /* Set TGT bits */
    CANx->sTxMailBox[0].TDTR |= ((uint32_t)CAN_TDT0R_TGT);
    CANx->sTxMailBox[1].TDTR |= ((uint32_t)CAN_TDT1R_TGT);
    CANx->sTxMailBox[2].TDTR |= ((uint32_t)CAN_TDT2R_TGT);
  }
  else
  {
    /* Disable the TTCM mode */
    CANx->MCR &= (uint32_t)(~(uint32_t)CAN_MCR_TTCM);

    /* Reset TGT bits */
    CANx->sTxMailBox[0].TDTR &= ((uint32_t)~CAN_TDT0R_TGT);
    CANx->sTxMailBox[1].TDTR &= ((uint32_t)~CAN_TDT1R_TGT);
    CANx->sTxMailBox[2].TDTR &= ((uint32_t)~CAN_TDT2R_TGT);
  }
}
/**
  * @}
  */


/** @defgroup CAN_Group2 CAN Frames Transmission functions
 *  @brief    CAN Frames Transmission functions 
 *
@verbatim    
 ===============================================================================
                ##### CAN Frames Transmission functions #####
 ===============================================================================  
    [..] This section provides functions allowing to 
         (+) Initiate and transmit a CAN frame message (if there is an empty mailbox).
         (+) Check the transmission status of a CAN Frame.
         (+) Cancel a transmit request.
   
@endverbatim
  * @{
  */

/**
  * @brief  Initiates and transmits a CAN frame message.
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  TxMessage: pointer to a structure which contains CAN Id, CAN DLC and CAN data.
  * @retval The number of the mailbox that is used for transmission or
  *         CAN_TxStatus_NoMailBox if there is no empty mailbox.
  */
uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
{
  uint8_t transmit_mailbox = 0;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
  assert_param(IS_CAN_RTR(TxMessage->RTR));
  assert_param(IS_CAN_DLC(TxMessage->DLC));

  /* Select one empty transmit mailbox */
  if ((CANx->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
  {
    transmit_mailbox = 0;
  }
  else if ((CANx->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
  {
    transmit_mailbox = 1;
  }
  else if ((CANx->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
  {
    transmit_mailbox = 2;
  }
  else
  {
    transmit_mailbox = CAN_TxStatus_NoMailBox;
  }

  if (transmit_mailbox != CAN_TxStatus_NoMailBox)
  {
    /* Set up the Id */
    CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
    if (TxMessage->IDE == CAN_Id_Standard)
    {
      assert_param(IS_CAN_STDID(TxMessage->StdId));  
      CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | \
                                                  TxMessage->RTR);
    }
    else
    {
      assert_param(IS_CAN_EXTID(TxMessage->ExtId));
      CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId << 3) | \
                                                  TxMessage->IDE | \
                                                  TxMessage->RTR);
    }
    
    /* Set up the DLC */
    TxMessage->DLC &= (uint8_t)0x0000000F;
    CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
    CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;

    /* Set up the data field */
    CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) | 
                                             ((uint32_t)TxMessage->Data[2] << 16) |
                                             ((uint32_t)TxMessage->Data[1] << 8) | 
                                             ((uint32_t)TxMessage->Data[0]));
    CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) | 
                                             ((uint32_t)TxMessage->Data[6] << 16) |
                                             ((uint32_t)TxMessage->Data[5] << 8) |
                                             ((uint32_t)TxMessage->Data[4]));
    /* Request transmission */
    CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
  }
  return transmit_mailbox;
}

/**
  * @brief  Checks the transmission status of a CAN Frame.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @param  TransmitMailbox: the number of the mailbox that is used for transmission.
  * @retval CAN_TxStatus_Ok if the CAN driver transmits the message, 
  *         CAN_TxStatus_Failed in an other case.
  */
uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
{
  uint32_t state = 0;

  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
 
  switch (TransmitMailbox)
  {
    case (CAN_TXMAILBOX_0): 
      state =   CANx->TSR &  (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0);
      break;
    case (CAN_TXMAILBOX_1): 
      state =   CANx->TSR &  (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1);
      break;
    case (CAN_TXMAILBOX_2): 
      state =   CANx->TSR &  (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2);
      break;
    default:
      state = CAN_TxStatus_Failed;
      break;
  }
  switch (state)
  {
      /* transmit pending  */
    case (0x0): state = CAN_TxStatus_Pending;
      break;
      /* transmit failed  */
     case (CAN_TSR_RQCP0 | CAN_TSR_TME0): state = CAN_TxStatus_Failed;
      break;
     case (CAN_TSR_RQCP1 | CAN_TSR_TME1): state = CAN_TxStatus_Failed;
      break;
     case (CAN_TSR_RQCP2 | CAN_TSR_TME2): state = CAN_TxStatus_Failed;
      break;
      /* transmit succeeded  */
    case (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0):state = CAN_TxStatus_Ok;
      break;
    case (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1):state = CAN_TxStatus_Ok;
      break;
    case (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2):state = CAN_TxStatus_Ok;
      break;
    default: state = CAN_TxStatus_Failed;
      break;
  }
  return (uint8_t) state;
}

/**
  * @brief  Cancels a transmit request.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @param  Mailbox: Mailbox number.
  * @retval None
  */
void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
  /* abort transmission */
  switch (Mailbox)
  {
    case (CAN_TXMAILBOX_0): CANx->TSR |= CAN_TSR_ABRQ0;
      break;
    case (CAN_TXMAILBOX_1): CANx->TSR |= CAN_TSR_ABRQ1;
      break;
    case (CAN_TXMAILBOX_2): CANx->TSR |= CAN_TSR_ABRQ2;
      break;
    default:
      break;
  }
}
/**
  * @}
  */


/** @defgroup CAN_Group3 CAN Frames Reception functions
 *  @brief    CAN Frames Reception functions 
 *
@verbatim    
 ===============================================================================
                  ##### CAN Frames Reception functions #####
 ===============================================================================  
    [..] This section provides functions allowing to 
         (+) Receive a correct CAN frame.
         (+) Release a specified receive FIFO (2 FIFOs are available).
         (+) Return the number of the pending received CAN frames.
   
@endverbatim
  * @{
  */

/**
  * @brief  Receives a correct CAN frame.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @param  FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
  * @param  RxMessage: pointer to a structure receive frame which contains CAN Id,
  *         CAN DLC, CAN data and FMI number.
  * @retval None
  */
void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_FIFO(FIFONumber));
  /* Get the Id */
  RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
  if (RxMessage->IDE == CAN_Id_Standard)
  {
    RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
  }
  else
  {
    RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
  }
  
  RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
  /* Get the DLC */
  RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
  /* Get the FMI */
  RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
  /* Get the data field */
  RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
  RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
  RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
  RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
  RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
  RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
  RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
  RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
  /* Release the FIFO */
  /* Release FIFO0 */
  if (FIFONumber == CAN_FIFO0)
  {
    CANx->RF0R |= CAN_RF0R_RFOM0;
  }
  /* Release FIFO1 */
  else /* FIFONumber == CAN_FIFO1 */
  {
    CANx->RF1R |= CAN_RF1R_RFOM1;
  }
}

/**
  * @brief  Releases the specified receive FIFO.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @param  FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
  * @retval None
  */
void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_FIFO(FIFONumber));
  /* Release FIFO0 */
  if (FIFONumber == CAN_FIFO0)
  {
    CANx->RF0R |= CAN_RF0R_RFOM0;
  }
  /* Release FIFO1 */
  else /* FIFONumber == CAN_FIFO1 */
  {
    CANx->RF1R |= CAN_RF1R_RFOM1;
  }
}

/**
  * @brief  Returns the number of pending received messages.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @param  FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
  * @retval NbMessage : which is the number of pending message.
  */
uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
  uint8_t message_pending=0;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_FIFO(FIFONumber));
  if (FIFONumber == CAN_FIFO0)
  {
    message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
  }
  else if (FIFONumber == CAN_FIFO1)
  {
    message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
  }
  else
  {
    message_pending = 0;
  }
  return message_pending;
}
/**
  * @}
  */


/** @defgroup CAN_Group4 CAN Operation modes functions
 *  @brief    CAN Operation modes functions 
 *
@verbatim    
 ===============================================================================
                    ##### CAN Operation modes functions #####
 ===============================================================================  
    [..] This section provides functions allowing to select the CAN Operation modes:
         (+) sleep mode.
         (+) normal mode. 
         (+) initialization mode.
   
@endverbatim
  * @{
  */
  
  
/**
  * @brief  Selects the CAN Operation mode.
  * @param  CAN_OperatingMode: CAN Operating Mode.
  *         This parameter can be one of @ref CAN_OperatingMode_TypeDef enumeration.
  * @retval status of the requested mode which can be: 
  *         - CAN_ModeStatus_Failed:  CAN failed entering the specific mode 
  *         - CAN_ModeStatus_Success: CAN Succeed entering the specific mode 
  */
uint8_t CAN_OperatingModeRequest(CAN_TypeDef* CANx, uint8_t CAN_OperatingMode)
{
  uint8_t status = CAN_ModeStatus_Failed;
  
  /* Timeout for INAK or also for SLAK bits*/
  uint32_t timeout = INAK_TIMEOUT; 

  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_OPERATING_MODE(CAN_OperatingMode));

  if (CAN_OperatingMode == CAN_OperatingMode_Initialization)
  {
    /* Request initialisation */
    CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_SLEEP)) | CAN_MCR_INRQ);

    /* Wait the acknowledge */
    while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) && (timeout != 0))
    {
      timeout--;
    }
    if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK)
    {
      status = CAN_ModeStatus_Failed;
    }
    else
    {
      status = CAN_ModeStatus_Success;
    }
  }
  else  if (CAN_OperatingMode == CAN_OperatingMode_Normal)
  {
    /* Request leave initialisation and sleep mode  and enter Normal mode */
    CANx->MCR &= (uint32_t)(~(CAN_MCR_SLEEP|CAN_MCR_INRQ));

    /* Wait the acknowledge */
    while (((CANx->MSR & CAN_MODE_MASK) != 0) && (timeout!=0))
    {
      timeout--;
    }
    if ((CANx->MSR & CAN_MODE_MASK) != 0)
    {
      status = CAN_ModeStatus_Failed;
    }
    else
    {
      status = CAN_ModeStatus_Success;
    }
  }
  else  if (CAN_OperatingMode == CAN_OperatingMode_Sleep)
  {
    /* Request Sleep mode */
    CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);

    /* Wait the acknowledge */
    while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) && (timeout!=0))
    {
      timeout--;
    }
    if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK)
    {
      status = CAN_ModeStatus_Failed;
    }
    else
    {
      status = CAN_ModeStatus_Success;
    }
  }
  else
  {
    status = CAN_ModeStatus_Failed;
  }

  return  (uint8_t) status;
}

/**
  * @brief  Enters the Sleep (low power) mode.
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @retval CAN_Sleep_Ok if sleep entered, CAN_Sleep_Failed otherwise.
  */
uint8_t CAN_Sleep(CAN_TypeDef* CANx)
{
  uint8_t sleepstatus = CAN_Sleep_Failed;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
    
  /* Request Sleep mode */
   CANx->MCR = (((CANx->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
   
  /* Sleep mode status */
  if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
  {
    /* Sleep mode not entered */
    sleepstatus =  CAN_Sleep_Ok;
  }
  /* return sleep mode status */
   return (uint8_t)sleepstatus;
}

/**
  * @brief  Wakes up the CAN peripheral from sleep mode .
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @retval CAN_WakeUp_Ok if sleep mode left, CAN_WakeUp_Failed otherwise.
  */
uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
{
  uint32_t wait_slak = SLAK_TIMEOUT;
  uint8_t wakeupstatus = CAN_WakeUp_Failed;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
    
  /* Wake up request */
  CANx->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
    
  /* Sleep mode status */
  while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
  {
   wait_slak--;
  }
  if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
  {
   /* wake up done : Sleep mode exited */
    wakeupstatus = CAN_WakeUp_Ok;
  }
  /* return wakeup status */
  return (uint8_t)wakeupstatus;
}
/**
  * @}
  */


/** @defgroup CAN_Group5 CAN Bus Error management functions
 *  @brief    CAN Bus Error management functions 
 *
@verbatim    
 ===============================================================================
                  ##### CAN Bus Error management functions #####
 ===============================================================================  
    [..] This section provides functions allowing to 
         (+) Return the CANx's last error code (LEC).
         (+) Return the CANx Receive Error Counter (REC).
         (+) Return the LSB of the 9-bit CANx Transmit Error Counter(TEC).
    [..]
         (@) If TEC is greater than 255, The CAN is in bus-off state.
         (@) If REC or TEC are greater than 96, an Error warning flag occurs.
         (@) If REC or TEC are greater than 127, an Error Passive Flag occurs.
                        
@endverbatim
  * @{
  */
  
/**
  * @brief  Returns the CANx's last error code (LEC).
  * @param  CANx: where x can be 1 to select the CAN1 peripheral.
  * @retval Error code: 
  *          - CAN_ERRORCODE_NoErr: No Error  
  *          - CAN_ERRORCODE_StuffErr: Stuff Error
  *          - CAN_ERRORCODE_FormErr: Form Error
  *          - CAN_ERRORCODE_ACKErr : Acknowledgment Error
  *          - CAN_ERRORCODE_BitRecessiveErr: Bit Recessive Error
  *          - CAN_ERRORCODE_BitDominantErr: Bit Dominant Error
  *          - CAN_ERRORCODE_CRCErr: CRC Error
  *          - CAN_ERRORCODE_SoftwareSetErr: Software Set Error  
  */
uint8_t CAN_GetLastErrorCode(CAN_TypeDef* CANx)
{
  uint8_t errorcode=0;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  
  /* Get the error code*/
  errorcode = (((uint8_t)CANx->ESR) & (uint8_t)CAN_ESR_LEC);
  
  /* Return the error code*/
  return errorcode;
}

/**
  * @brief  Returns the CANx Receive Error Counter (REC).
  * @note   In case of an error during reception, this counter is incremented 
  *         by 1 or by 8 depending on the error condition as defined by the CAN 
  *         standard. After every successful reception, the counter is 
  *         decremented by 1 or reset to 120 if its value was higher than 128. 
  *         When the counter value exceeds 127, the CAN controller enters the 
  *         error passive state.  
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.  
  * @retval CAN Receive Error Counter. 
  */
uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef* CANx)
{
  uint8_t counter=0;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  
  /* Get the Receive Error Counter*/
  counter = (uint8_t)((CANx->ESR & CAN_ESR_REC)>> 24);
  
  /* Return the Receive Error Counter*/
  return counter;
}


/**
  * @brief  Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC).
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @retval LSB of the 9-bit CAN Transmit Error Counter. 
  */
uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef* CANx)
{
  uint8_t counter=0;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  
  /* Get the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
  counter = (uint8_t)((CANx->ESR & CAN_ESR_TEC)>> 16);
  
  /* Return the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
  return counter;
}
/**
  * @}
  */

/** @defgroup CAN_Group6 Interrupts and flags management functions
 *  @brief   Interrupts and flags management functions
 *
@verbatim   
 ===============================================================================
              ##### Interrupts and flags management functions #####
 ===============================================================================  
    [..] This section provides functions allowing to configure the CAN Interrupts 
         and to get the status and clear flags and Interrupts pending bits.
    [..] The CAN provides 14 Interrupts sources and 15 Flags:
   
  *** Flags ***
  =============
    [..] The 15 flags can be divided on 4 groups: 
         (+) Transmit Flags:
             (++) CAN_FLAG_RQCP0. 
             (++) CAN_FLAG_RQCP1. 
             (++) CAN_FLAG_RQCP2: Request completed MailBoxes 0, 1 and 2  Flags
                  Set when when the last request (transmit or abort) has 
                  been performed. 
         (+) Receive Flags:
             (++) CAN_FLAG_FMP0.
             (++) CAN_FLAG_FMP1: FIFO 0 and 1 Message Pending Flags; 
                  Set to signal that messages are pending in the receive FIFO.
                  These Flags are cleared only by hardware. 
             (++) CAN_FLAG_FF0.
             (++) CAN_FLAG_FF1: FIFO 0 and 1 Full Flags; 
                  Set when three messages are stored in the selected FIFO.                        
             (++) CAN_FLAG_FOV0.              
             (++) CAN_FLAG_FOV1: FIFO 0 and 1 Overrun Flags; 
                  Set when a new message has been received and passed the filter 
                  while the FIFO was full.         
         (+) Operating Mode Flags: 
             (++) CAN_FLAG_WKU: Wake up Flag; 
                  Set to signal that a SOF bit has been detected while the CAN 
                  hardware was in Sleep mode. 
             (++) CAN_FLAG_SLAK: Sleep acknowledge Flag;
                  Set to signal that the CAN has entered Sleep Mode. 
         (+) Error Flags:  
             (++) CAN_FLAG_EWG: Error Warning Flag;
                  Set when the warning limit has been reached (Receive Error Counter 
                  or Transmit Error Counter greater than 96). 
                  This Flag is cleared only by hardware.
             (++) CAN_FLAG_EPV: Error Passive Flag;
                  Set when the Error Passive limit has been reached (Receive Error 
                  Counter or Transmit Error Counter greater than 127).
                  This Flag is cleared only by hardware.
             (++) CAN_FLAG_BOF: Bus-Off Flag;
                  Set when CAN enters the bus-off state. The bus-off state is 
                  entered on TEC overflow, greater than 255.
                  This Flag is cleared only by hardware.
             (++) CAN_FLAG_LEC: Last error code Flag;
                  Set If a message has been transferred (reception or transmission) 
                  with error, and the error code is hold.                      
  
  *** Interrupts ***
  ==================
    [..] The 14 interrupts can be divided on 4 groups: 
         (+) Transmit interrupt:   
             (++) CAN_IT_TME: Transmit mailbox empty Interrupt;
                  If enabled, this interrupt source is pending when no transmit 
                  request are pending for Tx mailboxes.      
         (+) Receive Interrupts:   
             (++) CAN_IT_FMP0.
             (++) CAN_IT_FMP1: FIFO 0 and FIFO1 message pending Interrupts;
                  If enabled, these interrupt sources are pending when messages 
                  are pending in the receive FIFO.
                  The corresponding interrupt pending bits are cleared only by hardware.
             (++) CAN_IT_FF0.              
             (++) CAN_IT_FF1: FIFO 0 and FIFO1 full Interrupts;
                  If enabled, these interrupt sources are pending when three messages 
                  are stored in the selected FIFO.
             (++) CAN_IT_FOV0.        
             (++) CAN_IT_FOV1: FIFO 0 and FIFO1 overrun Interrupts;        
                  If enabled, these interrupt sources are pending when a new message 
                  has been received and passed the filter while the FIFO was full.
         (+) Operating Mode Interrupts:    
             (++) CAN_IT_WKU: Wake-up Interrupt;
                  If enabled, this interrupt source is pending when a SOF bit has 
                  been detected while the CAN hardware was in Sleep mode.
             (++) CAN_IT_SLK: Sleep acknowledge Interrupt:
                  If enabled, this interrupt source is pending when the CAN has 
                  entered Sleep Mode.       
         (+) Error Interrupts:     
             (++) CAN_IT_EWG: Error warning Interrupt; 
                  If enabled, this interrupt source is pending when the warning limit 
                  has been reached (Receive Error Counter or Transmit Error Counter=96). 
             (++) CAN_IT_EPV: Error passive Interrupt;        
                  If enabled, this interrupt source is pending when the Error Passive 
                  limit has been reached (Receive Error Counter or Transmit Error Counter>127).
             (++) CAN_IT_BOF: Bus-off Interrupt;
                  If enabled, this interrupt source is pending when CAN enters 
                  the bus-off state. The bus-off state is entered on TEC overflow, 
                  greater than 255.
                  This Flag is cleared only by hardware.
             (++) CAN_IT_LEC: Last error code Interrupt;        
                  If enabled, this interrupt source is pending when a message has 
                  been transferred (reception or transmission) with error and the 
                  error code is hold.
             (++) CAN_IT_ERR: Error Interrupt;
                  If enabled, this interrupt source is pending when an error condition 
                  is pending.      
    [..] Managing the CAN controller events: 
         The user should identify which mode will be used in his application to manage 
         the CAN controller events: Polling mode or Interrupt mode.
         (+) In the Polling Mode it is advised to use the following functions:
             (++) CAN_GetFlagStatus() : to check if flags events occur. 
             (++) CAN_ClearFlag()     : to clear the flags events.
         (+) In the Interrupt Mode it is advised to use the following functions:
             (++) CAN_ITConfig()       : to enable or disable the interrupt source.
             (++) CAN_GetITStatus()    : to check if Interrupt occurs.
             (++) CAN_ClearITPendingBit() : to clear the Interrupt pending Bit 
                  (corresponding Flag).
                  This function has no impact on CAN_IT_FMP0 and CAN_IT_FMP1 Interrupts 
                  pending bits since there are cleared only by hardware. 
  
@endverbatim
  * @{
  */ 
/**
  * @brief  Enables or disables the specified CANx interrupts.
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
  *          This parameter can be: 
  *            @arg CAN_IT_TME: Transmit mailbox empty Interrupt 
  *            @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt 
  *            @arg CAN_IT_FF0: FIFO 0 full Interrupt
  *            @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
  *            @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt 
  *            @arg CAN_IT_FF1: FIFO 1 full Interrupt
  *            @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
  *            @arg CAN_IT_WKU: Wake-up Interrupt
  *            @arg CAN_IT_SLK: Sleep acknowledge Interrupt  
  *            @arg CAN_IT_EWG: Error warning Interrupt
  *            @arg CAN_IT_EPV: Error passive Interrupt
  *            @arg CAN_IT_BOF: Bus-off Interrupt  
  *            @arg CAN_IT_LEC: Last error code Interrupt
  *            @arg CAN_IT_ERR: Error Interrupt
  * @param  NewState: new state of the CAN interrupts.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_IT(CAN_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected CANx interrupt */
    CANx->IER |= CAN_IT;
  }
  else
  {
    /* Disable the selected CANx interrupt */
    CANx->IER &= ~CAN_IT;
  }
}
/**
  * @brief  Checks whether the specified CAN flag is set or not.
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_FLAG: specifies the flag to check.
  *          This parameter can be one of the following values:
  *            @arg CAN_FLAG_RQCP0: Request MailBox0 Flag
  *            @arg CAN_FLAG_RQCP1: Request MailBox1 Flag
  *            @arg CAN_FLAG_RQCP2: Request MailBox2 Flag
  *            @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag   
  *            @arg CAN_FLAG_FF0: FIFO 0 Full Flag       
  *            @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag 
  *            @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag   
  *            @arg CAN_FLAG_FF1: FIFO 1 Full Flag        
  *            @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag     
  *            @arg CAN_FLAG_WKU: Wake up Flag
  *            @arg CAN_FLAG_SLAK: Sleep acknowledge Flag 
  *            @arg CAN_FLAG_EWG: Error Warning Flag
  *            @arg CAN_FLAG_EPV: Error Passive Flag  
  *            @arg CAN_FLAG_BOF: Bus-Off Flag    
  *            @arg CAN_FLAG_LEC: Last error code Flag      
  * @retval The new state of CAN_FLAG (SET or RESET).
  */
FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
  FlagStatus bitstatus = RESET;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_GET_FLAG(CAN_FLAG));
  

  if((CAN_FLAG & CAN_FLAGS_ESR) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->ESR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else if((CAN_FLAG & CAN_FLAGS_MSR) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->MSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else if((CAN_FLAG & CAN_FLAGS_TSR) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->TSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else if((CAN_FLAG & CAN_FLAGS_RF0R) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->RF0R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else /* If(CAN_FLAG & CAN_FLAGS_RF1R != (uint32_t)RESET) */
  { 
    /* Check the status of the specified CAN flag */
    if ((uint32_t)(CANx->RF1R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  /* Return the CAN_FLAG status */
  return  bitstatus;
}

/**
  * @brief  Clears the CAN's pending flags.
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_FLAG: specifies the flag to clear.
  *          This parameter can be one of the following values:
  *            @arg CAN_FLAG_RQCP0: Request MailBox0 Flag
  *            @arg CAN_FLAG_RQCP1: Request MailBox1 Flag
  *            @arg CAN_FLAG_RQCP2: Request MailBox2 Flag 
  *            @arg CAN_FLAG_FF0: FIFO 0 Full Flag       
  *            @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag  
  *            @arg CAN_FLAG_FF1: FIFO 1 Full Flag        
  *            @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag     
  *            @arg CAN_FLAG_WKU: Wake up Flag
  *            @arg CAN_FLAG_SLAK: Sleep acknowledge Flag    
  *            @arg CAN_FLAG_LEC: Last error code Flag        
  * @retval None
  */
void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
  uint32_t flagtmp=0;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_CLEAR_FLAG(CAN_FLAG));
  
  if (CAN_FLAG == CAN_FLAG_LEC) /* ESR register */
  {
    /* Clear the selected CAN flags */
    CANx->ESR = (uint32_t)RESET;
  }
  else /* MSR or TSR or RF0R or RF1R */
  {
    flagtmp = CAN_FLAG & 0x000FFFFF;

    if ((CAN_FLAG & CAN_FLAGS_RF0R)!=(uint32_t)RESET)
    {
      /* Receive Flags */
      CANx->RF0R = (uint32_t)(flagtmp);
    }
    else if ((CAN_FLAG & CAN_FLAGS_RF1R)!=(uint32_t)RESET)
    {
      /* Receive Flags */
      CANx->RF1R = (uint32_t)(flagtmp);
    }
    else if ((CAN_FLAG & CAN_FLAGS_TSR)!=(uint32_t)RESET)
    {
      /* Transmit Flags */
      CANx->TSR = (uint32_t)(flagtmp);
    }
    else /* If((CAN_FLAG & CAN_FLAGS_MSR)!=(uint32_t)RESET) */
    {
      /* Operating mode Flags */
      CANx->MSR = (uint32_t)(flagtmp);
    }
  }
}

/**
  * @brief  Checks whether the specified CANx interrupt has occurred or not.
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_IT: specifies the CAN interrupt source to check.
  *          This parameter can be one of the following values:
  *            @arg CAN_IT_TME: Transmit mailbox empty Interrupt 
  *            @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt 
  *            @arg CAN_IT_FF0: FIFO 0 full Interrupt
  *            @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
  *            @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt 
  *            @arg CAN_IT_FF1: FIFO 1 full Interrupt
  *            @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
  *            @arg CAN_IT_WKU: Wake-up Interrupt
  *            @arg CAN_IT_SLK: Sleep acknowledge Interrupt  
  *            @arg CAN_IT_EWG: Error warning Interrupt
  *            @arg CAN_IT_EPV: Error passive Interrupt
  *            @arg CAN_IT_BOF: Bus-off Interrupt  
  *            @arg CAN_IT_LEC: Last error code Interrupt
  *            @arg CAN_IT_ERR: Error Interrupt
  * @retval The current state of CAN_IT (SET or RESET).
  */
ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
  ITStatus itstatus = RESET;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_IT(CAN_IT));
  
  /* check the interrupt enable bit */
 if((CANx->IER & CAN_IT) != RESET)
 {
   /* in case the Interrupt is enabled, .... */
    switch (CAN_IT)
    {
      case CAN_IT_TME:
        /* Check CAN_TSR_RQCPx bits */
        itstatus = CheckITStatus(CANx->TSR, CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2);  
        break;
      case CAN_IT_FMP0:
        /* Check CAN_RF0R_FMP0 bit */
        itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FMP0);  
        break;
      case CAN_IT_FF0:
        /* Check CAN_RF0R_FULL0 bit */
        itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FULL0);  
        break;
      case CAN_IT_FOV0:
        /* Check CAN_RF0R_FOVR0 bit */
        itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FOVR0);  
        break;
      case CAN_IT_FMP1:
        /* Check CAN_RF1R_FMP1 bit */
        itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FMP1);  
        break;
      case CAN_IT_FF1:
        /* Check CAN_RF1R_FULL1 bit */
        itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FULL1);  
        break;
      case CAN_IT_FOV1:
        /* Check CAN_RF1R_FOVR1 bit */
        itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FOVR1);  
        break;
      case CAN_IT_WKU:
        /* Check CAN_MSR_WKUI bit */
        itstatus = CheckITStatus(CANx->MSR, CAN_MSR_WKUI);  
        break;
      case CAN_IT_SLK:
        /* Check CAN_MSR_SLAKI bit */
        itstatus = CheckITStatus(CANx->MSR, CAN_MSR_SLAKI);  
        break;
      case CAN_IT_EWG:
        /* Check CAN_ESR_EWGF bit */
        itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EWGF);  
        break;
      case CAN_IT_EPV:
        /* Check CAN_ESR_EPVF bit */
        itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EPVF);  
        break;
      case CAN_IT_BOF:
        /* Check CAN_ESR_BOFF bit */
        itstatus = CheckITStatus(CANx->ESR, CAN_ESR_BOFF);  
        break;
      case CAN_IT_LEC:
        /* Check CAN_ESR_LEC bit */
        itstatus = CheckITStatus(CANx->ESR, CAN_ESR_LEC);  
        break;
      case CAN_IT_ERR:
        /* Check CAN_MSR_ERRI bit */ 
        itstatus = CheckITStatus(CANx->MSR, CAN_MSR_ERRI); 
        break;
      default:
        /* in case of error, return RESET */
        itstatus = RESET;
        break;
    }
  }
  else
  {
   /* in case the Interrupt is not enabled, return RESET */
    itstatus  = RESET;
  }
  
  /* Return the CAN_IT status */
  return  itstatus;
}

/**
  * @brief  Clears the CANx's interrupt pending bits.
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_IT: specifies the interrupt pending bit to clear.
  *          This parameter can be one of the following values:
  *            @arg CAN_IT_TME: Transmit mailbox empty Interrupt
  *            @arg CAN_IT_FF0: FIFO 0 full Interrupt
  *            @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt
  *            @arg CAN_IT_FF1: FIFO 1 full Interrupt
  *            @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt
  *            @arg CAN_IT_WKU: Wake-up Interrupt
  *            @arg CAN_IT_SLK: Sleep acknowledge Interrupt  
  *            @arg CAN_IT_EWG: Error warning Interrupt
  *            @arg CAN_IT_EPV: Error passive Interrupt
  *            @arg CAN_IT_BOF: Bus-off Interrupt  
  *            @arg CAN_IT_LEC: Last error code Interrupt
  *            @arg CAN_IT_ERR: Error Interrupt 
  * @retval None
  */
void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_CLEAR_IT(CAN_IT));

  switch (CAN_IT)
  {
    case CAN_IT_TME:
      /* Clear CAN_TSR_RQCPx (rc_w1)*/
      CANx->TSR = CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2;  
      break;
    case CAN_IT_FF0:
      /* Clear CAN_RF0R_FULL0 (rc_w1)*/
      CANx->RF0R = CAN_RF0R_FULL0; 
      break;
    case CAN_IT_FOV0:
      /* Clear CAN_RF0R_FOVR0 (rc_w1)*/
      CANx->RF0R = CAN_RF0R_FOVR0; 
      break;
    case CAN_IT_FF1:
      /* Clear CAN_RF1R_FULL1 (rc_w1)*/
      CANx->RF1R = CAN_RF1R_FULL1;  
      break;
    case CAN_IT_FOV1:
      /* Clear CAN_RF1R_FOVR1 (rc_w1)*/
      CANx->RF1R = CAN_RF1R_FOVR1; 
      break;
    case CAN_IT_WKU:
      /* Clear CAN_MSR_WKUI (rc_w1)*/
      CANx->MSR = CAN_MSR_WKUI;  
      break;
    case CAN_IT_SLK:
      /* Clear CAN_MSR_SLAKI (rc_w1)*/ 
      CANx->MSR = CAN_MSR_SLAKI;   
      break;
    case CAN_IT_EWG:
      /* Clear CAN_MSR_ERRI (rc_w1) */
      CANx->MSR = CAN_MSR_ERRI;
       /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/ 
      break;
    case CAN_IT_EPV:
      /* Clear CAN_MSR_ERRI (rc_w1) */
      CANx->MSR = CAN_MSR_ERRI; 
       /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
      break;
    case CAN_IT_BOF:
      /* Clear CAN_MSR_ERRI (rc_w1) */ 
      CANx->MSR = CAN_MSR_ERRI; 
       /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/
       break;
    case CAN_IT_LEC:
      /*  Clear LEC bits */
      CANx->ESR = RESET; 
      /* Clear CAN_MSR_ERRI (rc_w1) */
      CANx->MSR = CAN_MSR_ERRI; 
      break;
    case CAN_IT_ERR:
      /*Clear LEC bits */
      CANx->ESR = RESET; 
      /* Clear CAN_MSR_ERRI (rc_w1) */
      CANx->MSR = CAN_MSR_ERRI; 
       /* @note BOFF, EPVF and EWGF Flags are cleared by hardware depending on the CAN Bus status*/
       break;
    default:
       break;
   }
}
 /**
  * @}
  */

/**
  * @brief  Checks whether the CAN interrupt has occurred or not.
  * @param  CAN_Reg: specifies the CAN interrupt register to check.
  * @param  It_Bit: specifies the interrupt source bit to check.
  * @retval The new state of the CAN Interrupt (SET or RESET).
  */
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
{
  ITStatus pendingbitstatus = RESET;
  
  if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
  {
    /* CAN_IT is set */
    pendingbitstatus = SET;
  }
  else
  {
    /* CAN_IT is reset */
    pendingbitstatus = RESET;
  }
  return pendingbitstatus;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/