summaryrefslogtreecommitdiff
path: root/tool/mbed/mbed-sdk/libraries/mbed/targets/cmsis/TARGET_STM/TARGET_STM32F3/stm32f3xx_hal_opamp.c
blob: cf55ea1924ec669f5e1eed96c652a9d1a4cd27fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/**
  ******************************************************************************
  * @file    stm32f3xx_hal_opamp.c
  * @author  MCD Application Team
  * @version V1.1.0
  * @date    12-Sept-2014
  * @brief   OPAMP HAL module driver.
  *    
  *          This file provides firmware functions to manage the following 
  *          functionalities of the operational amplifiers (OPAMP1,...OPAMP4) 
  *          peripheral: 
  *           + OPAMP Configuration
  *           + OPAMP calibration
  *
  *          Thanks to
  *           + Initialization/de-initialization functions
  *           + I/O operation functions
  *           + Peripheral Control functions
  *           + Peripheral State functions
  *         
  @verbatim
================================================================================
          ##### OPAMP Peripheral Features #####
================================================================================
           
  [..] The device integrates up to 4 operational amplifiers OPAMP1, OPAMP2,
       OPAMP3 and OPAMP4:
       
       (#) The OPAMP(s) provides several exclusive running modes.
       (+) Standalone mode
       (+) Programmable Gain Amplifier (PGA) mode (Resistor feedback output)
       (+) Follower mode

       (#) The OPAMP(s) provide(s) calibration capabilities.  
       (+) Calibration aims at correcting some offset for running mode.
       (+) The OPAMP uses either factory calibration settings OR user defined 
           calibration (trimming) settings (i.e. trimming mode).
       (+) The user defined settings can be figured out using self calibration 
           handled by HAL_OPAMP_SelfCalibrate, HAL_OPAMPEx_SelfCalibrateAll
       (+) HAL_OPAMP_SelfCalibrate:
       (++) Runs automatically the calibration in 2 steps. 
            (90% of VDDA for NMOS transistors, 10% of VDDA for PMOS transistors).
            (As OPAMP is Rail-to-rail input/output, these 2 steps calibration is 
            appropriate and enough in most cases).
       (++) Enables the user trimming mode
       (++) Updates the init structure with trimming values with fresh calibration 
            results. 
            The user may store the calibration results for larger 
            (ex monitoring the trimming as a function of temperature 
            for instance)
       (++) for STM32F3 devices having 2 or 4 OPAMPs
            HAL_OPAMPEx_SelfCalibrateAll
            runs calibration of 2 or 4 OPAMPs in parallel. 
       
       (#) For any running mode, an additional Timer-controlled Mux (multiplexer) 
           mode can be set on top.
       (+) Timer-controlled Mux mode allows Automatic switching between inverting
           and non-inverting input. 
       (+) Hence on top of defaults (primary) inverting and non-inverting inputs,
           the user shall select secondary inverting and non inverting inputs.
       (+) TIM1 CC6 provides the alternate switching tempo between defaults 
           (primary) and secondary inputs. 
             
       (#) Running mode: Standalone mode 
       (+) Gain is set externally (gain depends on external loads).
       (+) Follower mode also possible externally by connecting the inverting input to
           the output.
       
       (#) Running mode: Follower mode
       (+) No Inverting Input is connected.
       
       (#) Running mode: Programmable Gain Amplifier (PGA) mode 
           (Resistor feedback output)
       (+) The OPAMP(s) output(s) can be internally connected to resistor feedback
           output.
       (+) OPAMP gain is either 2, 4, 8 or 16.
        
       (#) The OPAMPs non inverting input (both default and secondary) can be 
           selected among the list shown by table below.
       
       (#) The OPAMPs non inverting input (both default and secondary) can be 
           selected among the list shown by table below.
       
   [..] Table 1.  OPAMPs inverting/non-inverting inputs for the STM32F3 devices:
     
    +--------------------------------------------------------------+     
    |                 |        | OPAMP1 | OPAMP2 | OPAMP3 | OPAMP4 |
    |-----------------|--------|--------|--------|--------|--------|
    |                 | No conn|   X    |   X    |   X    |   X    |
    | Inverting Input | VM0    |  PC5   |  PC5   |  PB10  |  PB10  |
    | (1)             | VM1    |  PA3   |  PA5   |  PB2   |  PD8   |
    |-----------------|--------|--------|--------|--------|--------|
    |                 | VP0    |  PA1   |  PA7   |  PB0   |  PB13  |
    |  Non Inverting  | VP1    |  PA7   |  PD14  |  PB13  |  PD11  |
    |    Input        | VP2    |  PA3   |  PB0   |  PA1   |  PA4   |
    |                 | VP3    |  PA5   |  PB14  |  PA5   |  PB11  |
    +--------------------------------------------------------------+  
    (1): NA in follower mode.
           
   [..] Table 2.  OPAMPs outputs for the STM32F3 devices:

    +--------------------------------------------------------------+     
    |                 |        | OPAMP1 | OPAMP2 | OPAMP3 | OPAMP4 |
    |-----------------|--------|--------|--------|--------|--------|
    | Output          |        |  PA2   |  PA6   |  PB1   |  PB12  |
    |-----------------|--------|--------|--------|--------|--------|

      
            ##### How to use this driver #####
================================================================================
  [..] 
     
    *** Calibration ***
    ============================================
      To run the opamp calibration self calibration:

      (#) Start calibration using HAL_OPAMP_SelfCalibrate. 
           Store the calibration results.

    *** Running mode ***
    ============================================
      
      To use the opamp, perform the following steps:
            
      (#) Fill in the HAL_OPAMP_MspInit() to
      (+) Configure the opamp input AND output in analog mode using 
          HAL_GPIO_Init() to map the opamp output to the GPIO pin.
  
      (#) Configure the opamp using HAL_OPAMP_Init() function:
      (+) Select the mode
      (+) Select the inverting input
      (+) Select the non-inverting input 
      (+) Select if the Timer controlled Mux mode is enabled/disabled
      (+) If the Timer controlled Mux mode is enabled, select the secondary inverting input
      (+) If the Timer controlled Mux mode is enabled, Select the secondary non-inverting input 
      (+) If PGA mode is enabled, Select if inverting input is connected.
      (+) Select either factory or user defined trimming mode.
      (+) If the user defined trimming mode is enabled, select PMOS & NMOS trimming values
          (typ. settings returned by HAL_OPAMP_SelfCalibrate function).
      
      (#) Enable the opamp using HAL_OPAMP_Start() function.
           
      (#) Disable the opamp using HAL_OPAMP_Stop() function.
      
      (#) Lock the opamp in running mode using HAL_OPAMP_Lock() function. From then The configuration 
          can only be modified after HW reset.

    *** Running mode: change of configuration while OPAMP ON  ***
    ============================================
    To Re-configure OPAMP when OPAMP is ON (change on the fly)
      (#) If needed, Fill in the HAL_OPAMP_MspInit()
      (+) This is the case for instance if you wish to use new OPAMP I/O

      (#) Configure the opamp using HAL_OPAMP_Init() function:
      (+) As in configure case, selects first the parameters you wish to modify.
      
  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_hal.h"
    
/** @addtogroup STM32F3xx_HAL_Driver
  * @{
  */

/** @defgroup OPAMP OPAMP HAL module driver
  * @brief OPAMP HAL module driver
  * @{
  */

#ifdef HAL_OPAMP_MODULE_ENABLED

#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
    defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
    defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
    defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup OPAMP_Private_Define OPAMP Private Define
 * @{
 */
/* CSR register reset value */ 
#define OPAMP_CSR_RESET_VALUE             ((uint32_t)0x00000000)
/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/

/** @defgroup OPAMP_Exported_Functions OPAMP Exported Functions
  * @{
  */

/** @defgroup OPAMP_Exported_Functions_Group1 Initialization and de-initialization functions
 *  @brief    Initialization and Configuration functions 
 *
@verbatim    
 ===============================================================================
              ##### Initialization/de-initialization  functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
 
@endverbatim
  * @{
  */

/**
  * @brief  Initializes the OPAMP according to the specified
  *         parameters in the OPAMP_InitTypeDef and create the associated handle.
  * @note   If the selected opamp is locked, initialization can't be performed.
  *         To unlock the configuration, perform a system reset.
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_Init(OPAMP_HandleTypeDef *hopamp)

{ 
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the OPAMP handle allocation and lock status */
  /* Init not allowed if calibration is ongoing */
  if((hopamp == HAL_NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))
  {
    return HAL_ERROR;
  }
  else
  {
      
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
       
    /* Set OPAMP parameters */
    assert_param(IS_OPAMP_FUNCTIONAL_NORMALMODE(hopamp->Init.Mode));
    assert_param(IS_OPAMP_NONINVERTING_INPUT(hopamp->Init.NonInvertingInput));
    if ((hopamp->Init.Mode) == OPAMP_STANDALONE_MODE)
    {
      assert_param(IS_OPAMP_INVERTING_INPUT(hopamp->Init.InvertingInput));
    }
  
    assert_param(IS_OPAMP_TIMERCONTROLLED_MUXMODE(hopamp->Init.TimerControlledMuxmode));

    if ((hopamp->Init.TimerControlledMuxmode) == OPAMP_TIMERCONTROLLEDMUXMODE_ENABLE)
    {
      assert_param(IS_OPAMP_SEC_NONINVERTINGINPUT(hopamp->Init.NonInvertingInputSecondary));
      if ((hopamp->Init.Mode) == OPAMP_STANDALONE_MODE)
      {
        assert_param(IS_OPAMP_SEC_INVERTINGINPUT(hopamp->Init.InvertingInputSecondary));
      }
    }
    
    if ((hopamp->Init.Mode) == OPAMP_PGA_MODE)
    {
      assert_param(IS_OPAMP_PGACONNECT(hopamp->Init.PgaConnect));
      assert_param(IS_OPAMP_PGA_GAIN(hopamp->Init.PgaGain));
    }
    
    assert_param(IS_OPAMP_TRIMMING(hopamp->Init.UserTrimming)); 
    if ((hopamp->Init.UserTrimming) == OPAMP_TRIMMING_USER)
    {
      assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueP));
      assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueN));
    }
 
    /* Init SYSCFG and the low level hardware to access opamp */
    __SYSCFG_CLK_ENABLE();
    
    /* Call MSP init function */
    HAL_OPAMP_MspInit(hopamp);
                                          
    /* Set OPAMP parameters */
    /*     Set  bits according to hopamp->hopamp->Init.Mode value                                 */
    /*     Set  bits according to hopamp->hopamp->Init.InvertingInput value                       */
    /*     Set  bits according to hopamp->hopamp->Init.NonInvertingInput value                    */
    /*     Set  bits according to hopamp->hopamp->Init.TimerControlledMuxmode value               */
    /*     Set  bits according to hopamp->hopamp->Init.InvertingInputSecondary  value             */
    /*     Set  bits according to hopamp->hopamp->Init.NonInvertingInputSecondary value           */
    /*     Set  bits according to hopamp->hopamp->Init.PgaConnect value                           */
    /*     Set  bits according to hopamp->hopamp->Init.PgaGain value                              */
    /*     Set  bits according to hopamp->hopamp->Init.UserTrimming value                         */
    /*     Set  bits according to hopamp->hopamp->Init.TrimmingValueP value                       */
    /*     Set  bits according to hopamp->hopamp->Init.TrimmingValueN value                       */
    
    
    /* check if OPAMP_PGA_MODE & in Follower mode */
    /*   - InvertingInput                         */
    /*   - InvertingInputSecondary                */
    /* are Not Applicable                         */
    
    if ((hopamp->Init.Mode == OPAMP_PGA_MODE) || (hopamp->Init.Mode == OPAMP_FOLLOWER_MODE))
    {
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_UPDATE_PARAMETERS_INIT_MASK, \
                                        hopamp->Init.Mode | \
                                        hopamp->Init.NonInvertingInput | \
                                        hopamp->Init.TimerControlledMuxmode | \
                                        hopamp->Init.NonInvertingInputSecondary  | \
                                        hopamp->Init.PgaConnect | \
                                        hopamp->Init.PgaGain | \
                                        hopamp->Init.UserTrimming | \
                                        (hopamp->Init.TrimmingValueP << OPAMP_INPUT_NONINVERTING) | \
                                        (hopamp->Init.TrimmingValueN << OPAMP_INPUT_INVERTING));  
    }    
    else /* OPAMP_STANDALONE_MODE */
    {
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_UPDATE_PARAMETERS_INIT_MASK, \
                                        hopamp->Init.Mode | \
                                        hopamp->Init.InvertingInput    | \
                                        hopamp->Init.NonInvertingInput | \
                                        hopamp->Init.TimerControlledMuxmode | \
                                        hopamp->Init.InvertingInputSecondary  | \
                                        hopamp->Init.NonInvertingInputSecondary  | \
                                        hopamp->Init.PgaConnect | \
                                        hopamp->Init.PgaGain | \
                                        hopamp->Init.UserTrimming | \
                                        (hopamp->Init.TrimmingValueP << OPAMP_INPUT_NONINVERTING) | \
                                        (hopamp->Init.TrimmingValueN << OPAMP_INPUT_INVERTING));     
    } 
    
    /* Update the OPAMP state*/
    if (hopamp->State == HAL_OPAMP_STATE_RESET)
    {
      /* From RESET state to READY State */
    hopamp->State = HAL_OPAMP_STATE_READY;
    }
    /* else: remain in READY or BUSY state (no update) */
  
    return status;
    }
}


/**
  * @brief  DeInitializes the OPAMP peripheral 
  * @note   Deinitialization can't be performed if the OPAMP configuration is locked.
  *         To unlock the configuration, perform a system reset.
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_DeInit(OPAMP_HandleTypeDef *hopamp)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  /* DeInit not allowed if calibration is ongoing */
  if((hopamp == HAL_NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

    /* Set OPAMP_CSR register to reset value */
    WRITE_REG(hopamp->Instance->CSR, OPAMP_CSR_RESET_VALUE);

    /* DeInit the low level hardware: GPIO, CLOCK and NVIC */
    HAL_OPAMP_MspDeInit(hopamp);

    /* Update the OPAMP state*/
    hopamp->State = HAL_OPAMP_STATE_RESET;
  }
  return status;
}

/**
  * @brief  Initializes the OPAMP MSP.
  * @param  hopamp: OPAMP handle
  * @retval None
  */
__weak void HAL_OPAMP_MspInit(OPAMP_HandleTypeDef *hopamp)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_OPAMP_MspInit could be implemented in the user file
   */

   /* Example */ 
}

/**
  * @brief  DeInitializes OPAMP MSP.
  * @param  hopamp: OPAMP handle
  * @retval None
  */
__weak void HAL_OPAMP_MspDeInit(OPAMP_HandleTypeDef *hopamp)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_OPAMP_MspDeInit could be implemented in the user file
   */

}

/**
  * @}
  */


/** @defgroup OPAMP_Exported_Functions_Group2 Input and Output operation functions 
 *  @brief   Data transfers functions 
 *
@verbatim   
 ===============================================================================
                      ##### IO operation  functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to manage the OPAMP data 
    transfers.

@endverbatim
  * @{
  */

/**
  * @brief  Start the opamp
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */

HAL_StatusTypeDef HAL_OPAMP_Start(OPAMP_HandleTypeDef *hopamp)
{ 
  HAL_StatusTypeDef status = HAL_OK;
  
  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  if((hopamp == HAL_NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
                      
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
    
    if(hopamp->State == HAL_OPAMP_STATE_READY)
    {
      /* Enable the selected opamp */
      SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);

      /* Update the OPAMP state*/     
      /* From HAL_OPAMP_STATE_READY to HAL_OPAMP_STATE_BUSY */
      hopamp->State = HAL_OPAMP_STATE_BUSY;   
    }
    else
    {
      status = HAL_ERROR;
    }
    
    
   }
  return status;
}

/**
  * @brief  Stop the opamp 
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_Stop(OPAMP_HandleTypeDef *hopamp)
{ 
  HAL_StatusTypeDef status = HAL_OK;
    
  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  /* Check if OPAMP calibration ongoing */
  if((hopamp == HAL_NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))  
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

    if(hopamp->State == HAL_OPAMP_STATE_BUSY)
    {
      /* Disable the selected opamp */
      CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN); 
    
      /* Update the OPAMP state*/     
      /* From  HAL_OPAMP_STATE_BUSY to HAL_OPAMP_STATE_READY*/
      hopamp->State = HAL_OPAMP_STATE_READY;
    }
    else
    {
      status = HAL_ERROR;
    }
  }
  return status;
}

/**
  * @brief  Run the self calibration of one OPAMP
  * @param  hopamp handle
  * @retval Updated offset trimming values (PMOS & NMOS), user trimming is enabled
  * @retval HAL status
  * @note   Calibration runs about 25 ms.
  */

HAL_StatusTypeDef HAL_OPAMP_SelfCalibrate(OPAMP_HandleTypeDef *hopamp)
{ 

  HAL_StatusTypeDef status = HAL_OK;
  
  uint32_t trimmingvaluen = 0;
  uint32_t trimmingvaluep = 0;
  uint32_t delta;
  
  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  if((hopamp == HAL_NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
  {
    status = HAL_ERROR;
  }
  else
  {
  
    /* Check if OPAMP in calibration mode and calibration not yet enable */
    if(hopamp->State ==  HAL_OPAMP_STATE_READY)
    {
      /* Check the parameter */
      assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

      /* Set Calibration mode */
      /* Non-inverting input connected to calibration reference voltage. */
      SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_FORCEVP);

      /*  user trimming values are used for offset calibration */
      SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM);
      
      /* Enable calibration */
      SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_CALON);
  
      /* 1st calibration - N */
      /* Select 90% VREF */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_90VDDA);
      
      /* Enable the selected opamp */
      SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
      
      /* Init trimming counter */    
      /* Medium value */
      trimmingvaluen = 16; 
      delta = 8;
      
      while (delta != 0)
      {
        /* Set candidate trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
              
        /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
        /* Offset trim time: during calibration, minimum time needed between */
        /* two steps to have 1 mV accuracy */
        HAL_Delay(2);

        if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET)
        { 
          /* OPAMP_CSR_OUTCAL is HIGH try higher trimming */
          trimmingvaluen += delta;
        }
        else
        {
          /* OPAMP_CSR_OUTCAL is LOW try lower trimming */
          trimmingvaluen -= delta;
        }
                      
        delta >>= 1;
      }

      /* Still need to check if righ calibration is current value or un step below */
      /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0  */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
      
       /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
       /* Offset trim time: during calibration, minimum time needed between */
       /* two steps to have 1 mV accuracy */
       HAL_Delay(2);
      
      if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET) 
      { 
        /* OPAMP_CSR_OUTCAL is actually one value more */
        trimmingvaluen++;
        /* Set right trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
      }
       
      /* 2nd calibration - P */
      /* Select 10% VREF */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_10VDDA);
      
      /* Init trimming counter */    
      /* Medium value */
      trimmingvaluep = 16; 
      delta = 8;
      
      while (delta != 0)
      {
        /* Set candidate trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);
               
        /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
        /* Offset trim time: during calibration, minimum time needed between */
        /* two steps to have 1 mV accuracy */
        HAL_Delay(2);

        if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET) 
        { 
          /* OPAMP_CSR_OUTCAL is HIGH try higher trimming */
          trimmingvaluep += delta;
        }
        else
        {
          trimmingvaluep -= delta;
        }
                      
        delta >>= 1;
      }
      
      /* Still need to check if righ calibration is current value or un step below */
      /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0 */
      /* Set candidate trimming */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);

       /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
       /* Offset trim time: during calibration, minimum time needed between */
       /* two steps to have 1 mV accuracy */
       HAL_Delay(2);
      
      if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET)
      { 
        /* OPAMP_CSR_OUTCAL is actually one value more */
        trimmingvaluep++;
        /* Set right trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);
      }
           
      /* Disable calibration */
      CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_CALON);

      /* Disable the OPAMP */
      CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
      
      /* Set normale operating mode  */
      /* Non-inverting input connected to calibration reference voltage. */
      CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_FORCEVP);
            
      /* Self calibration is successful  */
      /* Store calibration(user timming) results in init structure. */

      /* Write calibration result N */
      hopamp->Init.TrimmingValueN = trimmingvaluen;
     
      /* Write calibration result P */
      hopamp->Init.TrimmingValueP = trimmingvaluep;

      /* Select user timming mode */      
      /* And updated with calibrated settings */
      hopamp->Init.UserTrimming = OPAMP_TRIMMING_USER;
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
    }

    else
    {
      /* OPAMP can not be calibrated from this mode */ 
      status = HAL_ERROR;
    }   
  }
  return status;
}

/**
  * @}
  */

/** @defgroup OPAMP_Exported_Functions_Group3 Peripheral Control functions 
 *  @brief   management functions 
 *
@verbatim   
 ===============================================================================
                      ##### Peripheral Control functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to control the OPAMP data 
    transfers.



@endverbatim
  * @{
  */

/**
  * @brief  Lock the selected opamp configuration. 
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_Lock(OPAMP_HandleTypeDef *hopamp)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  /* OPAMP can be locked when enabled and running in normal mode */ 
  /*   It is meaningless otherwise */
  if((hopamp == HAL_NULL) || (hopamp->State == HAL_OPAMP_STATE_RESET) \
                      || (hopamp->State == HAL_OPAMP_STATE_READY) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)\
                      || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
  
  {
    status = HAL_ERROR;
  }
  
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
    
   /* Lock OPAMP */
    SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_LOCK);
  
   /* OPAMP state changed to locked */
    hopamp->State = HAL_OPAMP_STATE_BUSYLOCKED;
  }
  return status; 
}

/**
  * @}
  */

/** @defgroup OPAMP_Exported_Functions_Group4 Peripheral State functions 
 *  @brief   Peripheral State functions 
 *
@verbatim   
 ===============================================================================
                      ##### Peripheral State functions #####
 ===============================================================================  
    [..]
    This subsection permit to get in run-time the status of the peripheral 
    and the data flow.

@endverbatim
  * @{
  */

/**
  * @brief  Return the OPAMP state
  * @param  hopamp : OPAMP handle
  * @retval HAL state
  */
HAL_OPAMP_StateTypeDef HAL_OPAMP_GetState(OPAMP_HandleTypeDef *hopamp)
{
  /* Check the OPAMP handle allocation */
  if(hopamp == HAL_NULL)
  {
    return HAL_OPAMP_STATE_RESET;
  }

  /* Check the parameter */
  assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

  return hopamp->State;
}

/**
  * @brief  Return the OPAMP factory trimming value
  * @param  hopamp : OPAMP handle
  * @param  trimmingoffset : Trimming offset (P or N)
  * @retval Trimming value (P or N): range: 0->31
  *         or OPAMP_FACTORYTRIMMING_DUMMY if trimming value is not available
 */

OPAMP_TrimmingValueTypeDef HAL_OPAMP_GetTrimOffset (OPAMP_HandleTypeDef *hopamp, uint32_t trimmingoffset)
{
  uint32_t oldusertrimming = 0;
  OPAMP_TrimmingValueTypeDef  oldtrimmingvaluep = 0, oldtrimmingvaluen = 0, trimmingvalue = 0;
  
  /* Check the OPAMP handle allocation */
  /* Value can be retrieved in HAL_OPAMP_STATE_READY state */
  if((hopamp == HAL_NULL) || (hopamp->State == HAL_OPAMP_STATE_RESET) \
                      || (hopamp->State == HAL_OPAMP_STATE_BUSY) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)\
                      || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
  {
    return OPAMP_FACTORYTRIMMING_DUMMY;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
    assert_param(IS_OPAMP_FACTORYTRIMMING(trimmingoffset));
    
    /* Check the trimming mode */
    if ((READ_BIT(hopamp->Instance->CSR,OPAMP_CSR_USERTRIM)) != RESET) 
    {
      /* User trimming is used */
      oldusertrimming = OPAMP_TRIMMING_USER;
      /* Store the TrimmingValueP & TrimmingValueN */
      oldtrimmingvaluep = (hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETP) >> OPAMP_INPUT_NONINVERTING;
      oldtrimmingvaluen = (hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETN) >> OPAMP_INPUT_INVERTING;
    }
    
    /* Set factory timming mode */
    CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_USERTRIM);
    
    /* Get factory trimming  */
    if (trimmingoffset == OPAMP_FACTORYTRIMMING_P)
    {
      /* Return TrimOffsetP */
     trimmingvalue = ((hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETP) >> OPAMP_INPUT_NONINVERTING);
    }
    else 
    {
      /* Return TrimOffsetN */
      trimmingvalue = ((hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETN) >> OPAMP_INPUT_INVERTING);
    }
    
    /* Restore user trimming configuration if it was formerly set */
    /* Check if user trimming was used */
    if (oldusertrimming == OPAMP_TRIMMING_USER) 
    {
      /* Restore user trimming */
      SET_BIT(hopamp->Instance->CSR,OPAMP_CSR_USERTRIM);
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, oldtrimmingvaluep<<OPAMP_INPUT_NONINVERTING);
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, oldtrimmingvaluen<<OPAMP_INPUT_INVERTING);
    }
  }  
  return trimmingvalue;
}
/**
  * @}
  */

/**
  * @}
  */
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
       /* STM32F302xC || STM32F303xC || STM32F358xx || */
       /* STM32F303x8 || STM32F334x8 || STM32F328xx || */
       /* STM32F301x8 || STM32F302x8 || STM32F318xx    */

#endif /* HAL_OPAMP_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/