summaryrefslogtreecommitdiff
path: root/tmk_core/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_RENESAS/TARGET_RZ_A1H/i2c_api.c
blob: e3732e62d27ca103e1eaaf1b95f25ae4d808fd8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "i2c_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "r_typedefs.h"

#include "riic_iodefine.h"
#include "RZ_A1_Init.h"
#include "MBRZA1H.h"

volatile struct st_riic *RIIC[] = RIIC_ADDRESS_LIST;

#define REG(N) \
    RIIC[obj->i2c]->RIICn##N

/* RIICnCR1 */
#define CR1_RST   (1 << 6)
#define CR1_ICE   (1 << 7)

/* RIICnCR2 */
#define CR2_ST    (1 << 1)
#define CR2_RS    (1 << 2)
#define CR2_SP    (1 << 3)
#define CR2_TRS   (1 << 5)
#define CR2_BBSY  (1 << 7)

/* RIICnMR3 */
#define MR3_ACKBT (1 << 3)
#define MR3_ACKWP (1 << 4)
#define MR3_WAIT  (1 << 6)

/* RIICnSER */
#define SER_SAR0E (1 << 0)

/* RIICnSR1 */
#define SR1_AAS0  (1 << 0)

/* RIICnSR2 */
#define SR2_START (1 << 2)
#define SR2_STOP  (1 << 3)
#define SR2_NACKF (1 << 4)
#define SR2_RDRF  (1 << 5)
#define SR2_TEND  (1 << 6)
#define SR2_TDRE  (1 << 7)

#define WAIT_TIMEOUT    (4200)  /* Loop counter : Time-out is about 1ms. By 4200 loops, measured value is 1009ms. */

static const PinMap PinMap_I2C_SDA[] = {
    {P1_1 , I2C_0, 1},
    {P1_3 , I2C_1, 1},
    {P1_7 , I2C_3, 1},
    {NC   , NC   , 0}
};

static const PinMap PinMap_I2C_SCL[] = {
    {P1_0 , I2C_0, 1},
    {P1_2 , I2C_1, 1},
    {P1_6 , I2C_3, 1},
    {NC   , NC,    0}
};


static inline int i2c_status(i2c_t *obj) {
    return REG(SR2.UINT8[0]);
}

static void i2c_reg_reset(i2c_t *obj) {
    /* full reset */
    REG(CR1.UINT8[0]) &= ~CR1_ICE; // CR1.ICE off
    REG(CR1.UINT8[0]) |=  CR1_RST; // CR1.IICRST on
    REG(CR1.UINT8[0]) |=  CR1_ICE; // CR1.ICE on

    REG(MR1.UINT8[0])  =  0x08;    // P_phi /x  9bit (including Ack)
    REG(SER.UINT8[0])  =  0x00;    // no slave addr enabled

    /* set frequency */
    REG(MR1.UINT8[0]) |=  obj->pclk_bit;
    REG(BRL.UINT8[0])  =  obj->width_low;
    REG(BRH.UINT8[0])  =  obj->width_hi;

    REG(MR2.UINT8[0])  =  0x07;
    REG(MR3.UINT8[0])  =  0x00;

    REG(FER.UINT8[0])  =  0x72;    // SCLE, NFE enabled, TMOT
    REG(IER.UINT8[0])  =  0x00;    // no interrupt

    REG(CR1.UINT32) &= ~CR1_RST;   // CR1.IICRST negate reset
}

static inline int i2c_wait_RDRF(i2c_t *obj) {
    int timeout = 0;
    
    /* There is no timeout, but the upper limit value is set to avoid an infinite loop. */
    while (!(i2c_status(obj) & SR2_RDRF)) {
        timeout ++;
        if (timeout >= WAIT_TIMEOUT) {
            return -1;
        }
    }

    return 0;
}

static int i2c_wait_TDRE(i2c_t *obj) {
    int timeout = 0;

    /* There is no timeout, but the upper limit value is set to avoid an infinite loop. */
    while (!(i2c_status(obj) & SR2_TDRE)) {
        timeout ++;
        if (timeout >= WAIT_TIMEOUT) {
            return -1;
        }
    }

    return 0;
}

static int i2c_wait_TEND(i2c_t *obj) {
    int timeout = 0;
    
    /* There is no timeout, but the upper limit value is set to avoid an infinite loop. */
    while (!(i2c_status(obj) & SR2_TEND)) {
        timeout ++;
        if (timeout >= WAIT_TIMEOUT) {
            return -1;
        }
    }

    return 0;
}


static int i2c_wait_START(i2c_t *obj) {
    int timeout = 0;
    
    /* There is no timeout, but the upper limit value is set to avoid an infinite loop. */
    while (!(i2c_status(obj) & SR2_START)) {
        timeout ++;
        if (timeout >= WAIT_TIMEOUT) {
            return -1;
        }
    }

    return 0;
}

static int i2c_wait_STOP(i2c_t *obj) {
    int timeout = 0;
    
    /* There is no timeout, but the upper limit value is set to avoid an infinite loop. */
    while (!(i2c_status(obj) & SR2_STOP)) {
        timeout ++;
        if (timeout >= WAIT_TIMEOUT) {
            return -1;
        }
    }

    return 0;
}

static void i2c_set_SR2_NACKF_STOP(i2c_t *obj) {
    /* SR2.NACKF = 0 */
    REG(SR2.UINT32) &= ~SR2_NACKF;
    /* SR2.STOP = 0 */
    REG(SR2.UINT32) &= ~SR2_STOP;
}

static void i2c_set_MR3_NACK(i2c_t *obj) {
    /* send a NOT ACK */
    REG(MR3.UINT32) |=  MR3_ACKWP;
    REG(MR3.UINT32) |=  MR3_ACKBT;
    REG(MR3.UINT32) &= ~MR3_ACKWP;
}

static void i2c_set_MR3_ACK(i2c_t *obj) {
    /* send a ACK */
    REG(MR3.UINT32) |=  MR3_ACKWP;
    REG(MR3.UINT32) &= ~MR3_ACKBT;
    REG(MR3.UINT32) &= ~MR3_ACKWP;
}

static inline void i2c_power_enable(i2c_t *obj) {
    volatile uint8_t dummy;
    switch ((int)obj->i2c) {
        case I2C_0:
            CPGSTBCR9 &= ~(0x80);
            break;
        case I2C_1:
            CPGSTBCR9 &= ~(0x40);
            break;
        case I2C_2:
            CPGSTBCR9 &= ~(0x20);
            break;
        case I2C_3:
            CPGSTBCR9 &= ~(0x10);
            break;
    }
    dummy = CPGSTBCR9;
}

void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
    /* determine the I2C to use */
    I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
    I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
    obj->i2c = pinmap_merge(i2c_sda, i2c_scl);
    MBED_ASSERT((int)obj->i2c != NC);

    /* enable power */
    i2c_power_enable(obj);

    /* set default frequency at 100k */
    i2c_frequency(obj, 100000);

    pinmap_pinout(sda, PinMap_I2C_SDA);
    pinmap_pinout(scl, PinMap_I2C_SCL);
    
    obj->last_stop_flag = 1;
}

inline int i2c_start(i2c_t *obj) {
    int timeout = 0;

    while (REG(CR2.UINT32) & CR2_BBSY) {
        timeout ++;
        if (timeout >= obj->bbsy_wait_cnt) {
            break;
        }
    }
    /* Start Condition */
    REG(CR2.UINT8[0]) |= CR2_ST;

    return 0;
}

static inline int i2c_restart(i2c_t *obj) {
    /* SR2.START = 0 */
    REG(SR2.UINT32) &= ~SR2_START;
    /* ReStart condition */
    REG(CR2.UINT32) |= CR2_RS;

    return 0;
}

inline int i2c_stop(i2c_t *obj) {
    /* SR2.STOP = 0 */
    REG(SR2.UINT32) &= ~SR2_STOP;
    /* Stop condition */
    REG(CR2.UINT32) |= CR2_SP;

    return 0;
}

static void i2c_set_err_noslave(i2c_t *obj) {
    (void)i2c_stop(obj);
    (void)i2c_wait_STOP(obj);
    i2c_set_SR2_NACKF_STOP(obj);
    obj->last_stop_flag = 1;
}

static inline int i2c_do_write(i2c_t *obj, int value) {
    int timeout = 0;

    if (!(i2c_status(obj) & SR2_NACKF)) {
        /* RIICnSR2.NACKF=0 */
        /* There is no timeout, but the upper limit value is set to avoid an infinite loop. */
        while (!(i2c_status(obj) & SR2_TDRE)) {
            /* RIICnSR2.TDRE=0 */
            timeout ++;
            if (timeout >= WAIT_TIMEOUT) {
                return -1;
            }
            if (i2c_status(obj) & SR2_NACKF) {
                /* RIICnSR2.NACKF=1 */
                return -1;
            }
        }
        /* write the data */
        REG(DRT.UINT32) = value;
    } else {
        return -1;
    }

    return 0;
}

static inline int i2c_read_address_write(i2c_t *obj, int value) {
    int status;
    
    status = i2c_wait_TDRE(obj);
    if (status == 0) {
        /* write the data */
        REG(DRT.UINT32) = value;
    }
    
    return status;

}

static inline int i2c_do_read(i2c_t *obj, int last) {
    if (last == 2) {
        /* this time is befor last byte read */
        /* Set MR3 WAIT bit is 1 */;
        REG(MR3.UINT32) |= MR3_WAIT;
    } else if (last == 1) {
        i2c_set_MR3_NACK(obj);
    } else {
        i2c_set_MR3_ACK(obj);
    }

    /* return the data */
    return (REG(DRR.UINT32) & 0xFF);
}

void i2c_frequency(i2c_t *obj, int hz) {
    float64_t pclk_val;
    float64_t wait_utime;
    volatile float64_t bps;
    volatile float64_t L_time;         /* H Width period */
    volatile float64_t H_time;         /* L Width period */
    uint32_t tmp_L_width;
    uint32_t tmp_H_width;
    uint32_t remainder;
    uint32_t wk_cks = 0;

    /* set PCLK */
    if (false == RZ_A1_IsClockMode0()) {
        pclk_val = (float64_t)CM1_RENESAS_RZ_A1_P0_CLK;
    } else {
        pclk_val = (float64_t)CM0_RENESAS_RZ_A1_P0_CLK;
    }

    /* Min 10kHz, Max 400kHz */
    if (hz < 10000) {
        bps = 10000;
    } else if (hz > 400000) {
        bps = 400000;
    } else {
        bps = (float64_t)hz;
    }

    /* Calculation L width time */
    L_time = (1 / (2 * bps));   /* Harf period of frequency */
    H_time = L_time;

    /* Check I2C mode of Speed */
    if (bps > 100000) {
        /* Fast-mode */
        L_time -= 102E-9;    /* Falling time of SCL clock. */
        H_time -= 138E-9;    /* Rising time of SCL clock. */
        /* Check L wideth */
        if (L_time < 1.3E-6) {
            /* Wnen L width less than 1.3us */
            /* Subtract Rise up and down time for SCL from H/L width */
            L_time = 1.3E-6;
            H_time = (1 / bps) - L_time - 138E-9 - 102E-9;
        }
    }

    tmp_L_width   = (uint32_t)(L_time * pclk_val * 10);
    tmp_L_width >>= 1;
    wk_cks++;
    while (tmp_L_width >= 341) {
        tmp_L_width >>= 1;
        wk_cks++;
    }
    remainder   = tmp_L_width % 10;
    tmp_L_width = ((tmp_L_width + 9) / 10) - 3;       /* carry */

    tmp_H_width   = (uint32_t)(H_time * pclk_val * 10);
    tmp_H_width >>= wk_cks;
    if (remainder == 0) {
        tmp_H_width   = ((tmp_H_width + 9) / 10) - 3; /* carry */
    } else {
        remainder    += tmp_H_width % 10;
        tmp_H_width   = (tmp_H_width / 10) - 3;
        if (remainder > 10) {
            tmp_H_width += 1;                         /* fine adjustment */
        }
    }
    /* timeout of BBSY bit is minimum low width by frequency */
    /* so timeout calculates "(low width) * 2" by frequency */
    wait_utime = (L_time * 2) * 1000000;
    /* 1 wait of BBSY bit is about 0.3us. if it's below 0.3us, wait count is set as 1. */
    if (wait_utime <= 0.3) {
        obj->bbsy_wait_cnt = 1;
    } else {
        obj->bbsy_wait_cnt = (int)(wait_utime / 0.3);
    }


    /* I2C Rate */
    obj->pclk_bit  = (uint8_t)(0x10 * wk_cks);        /* P_phi / xx */
    obj->width_low = (uint8_t)(tmp_L_width | 0x000000E0);
    obj->width_hi  = (uint8_t)(tmp_H_width | 0x000000E0);

    /* full reset */
    i2c_reg_reset(obj);
}

int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
    int count = 0;
    int status;
    int value;
    volatile uint32_t work_reg = 0;

    if(length <= 0) {
        return 0;
    }
    i2c_set_MR3_ACK(obj);
    /* There is a STOP condition for last processing */
    if (obj->last_stop_flag != 0) {
        status = i2c_start(obj);
        if (status != 0) {
            i2c_set_err_noslave(obj);
            return I2C_ERROR_BUS_BUSY;
        }
    }
    obj->last_stop_flag = stop;
    /*  Send Slave address */
    status = i2c_read_address_write(obj, (address | 0x01));
    if (status != 0) {
        i2c_set_err_noslave(obj);
        return I2C_ERROR_NO_SLAVE;
    }
    /* wait RDRF */
    status = i2c_wait_RDRF(obj);
    /* check ACK/NACK */
    if ((status != 0) || (REG(SR2.UINT32) & SR2_NACKF == 1)) {
        /* Slave sends NACK */
        i2c_stop(obj);
        /* dummy read */
        value = REG(DRR.UINT32);
        (void)i2c_wait_STOP(obj);
        i2c_set_SR2_NACKF_STOP(obj);
        obj->last_stop_flag = 1;
        return I2C_ERROR_NO_SLAVE;
    }
    /* Read in all except last byte */
    if (length > 2) {
        /* dummy read */
        value = REG(DRR.UINT32);
        for (count = 0; count < (length - 1); count++) {
            /* wait for it to arrive */
            status = i2c_wait_RDRF(obj);
            if (status != 0) {
                i2c_set_err_noslave(obj);
                return I2C_ERROR_NO_SLAVE;
            }
            /* Recieve the data */
            if (count == (length - 2)) {
                value = i2c_do_read(obj, 1);
            } else if ((length >= 3) && (count == (length - 3))) {
                value = i2c_do_read(obj, 2);
            } else {
                value = i2c_do_read(obj, 0);
            }
            data[count] = (char)value;
        }
    } else if (length == 2) {
        /* Set MR3 WATI bit is 1 */
        REG(MR3.UINT32) |= MR3_WAIT;
        /* dummy read */
        value = REG(DRR.UINT32);
        /* wait for it to arrive */
        status = i2c_wait_RDRF(obj);
        if (status != 0) {
            i2c_set_err_noslave(obj);
            return I2C_ERROR_NO_SLAVE;
        }
        i2c_set_MR3_NACK(obj);
        data[count] = (char)REG(DRR.UINT32);
        count++;
    } else {
        /* length == 1 */
        /* Set MR3 WATI bit is 1 */;
        REG(MR3.UINT32) |=  MR3_WAIT;
        i2c_set_MR3_NACK(obj);
        /* dummy read */
        value = REG(DRR.UINT32);
    }
    /* wait for it to arrive */
    status = i2c_wait_RDRF(obj);
    if (status != 0) {
        i2c_set_err_noslave(obj);
        return I2C_ERROR_NO_SLAVE;
    }

    /* If not repeated start, send stop. */
    if (stop) {
        (void)i2c_stop(obj);
        /* RIICnDRR read */
        value = REG(DRR.UINT32) & 0xFF;
        data[count] = (char)value;
        /* RIICnMR3.WAIT = 0 */
        REG(MR3.UINT32) &= ~MR3_WAIT;
        (void)i2c_wait_STOP(obj);
        i2c_set_SR2_NACKF_STOP(obj);
    } else {
        (void)i2c_restart(obj);
        /* RIICnDRR read */
        value = REG(DRR.UINT32) & 0xFF;
        data[count] = (char)value;
        /* RIICnMR3.WAIT = 0 */
        REG(MR3.UINT32) &= ~MR3_WAIT;
        (void)i2c_wait_START(obj);
        /* SR2.START = 0 */
        REG(SR2.UINT32) &= ~SR2_START;
    }

    return length;
}

int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
    int cnt;
    int status;

    if(length <= 0) {
        return 0;
    }

    /* There is a STOP condition for last processing */
    if (obj->last_stop_flag != 0) {
        status = i2c_start(obj);
        if (status != 0) {
            i2c_set_err_noslave(obj);
            return I2C_ERROR_BUS_BUSY;
        }
    }
    obj->last_stop_flag = stop;
    /*  Send Slave address */
    status = i2c_do_write(obj, address);
    if (status != 0) {
        i2c_set_err_noslave(obj);
        return I2C_ERROR_NO_SLAVE;
    }
    /* Send Write data */
    for (cnt=0; cnt<length; cnt++) {
        status = i2c_do_write(obj, data[cnt]);
        if(status != 0) {
            i2c_set_err_noslave(obj);
            return cnt;
        }
    }
    /* Wait send end */
    status = i2c_wait_TEND(obj);
    if (status != 0) {
        i2c_set_err_noslave(obj);
        return I2C_ERROR_NO_SLAVE;
    }
    /* If not repeated start, send stop. */
    if (stop) {
        (void)i2c_stop(obj);
        (void)i2c_wait_STOP(obj);
        i2c_set_SR2_NACKF_STOP(obj);
    } else {
        (void)i2c_restart(obj);
        (void)i2c_wait_START(obj);
        /* SR2.START = 0 */
        REG(SR2.UINT32) &= ~SR2_START;

    }
    
    return length;
}

void i2c_reset(i2c_t *obj) {
    i2c_stop(obj);
    (void)i2c_wait_STOP(obj);
    i2c_set_SR2_NACKF_STOP(obj);
}

int i2c_byte_read(i2c_t *obj, int last) {
    int status;

    /* wait for it to arrive */
    status = i2c_wait_RDRF(obj);
    if (status != 0) {
        i2c_set_err_noslave(obj);
        return I2C_ERROR_NO_SLAVE;
    }
    
    return (i2c_do_read(obj, last));
}

int i2c_byte_write(i2c_t *obj, int data) {
    int ack;
    int status;
    
    status = i2c_do_write(obj, (data & 0xFF));
    if (status != 0) {
        i2c_set_err_noslave(obj);
        ack = 0;
    } else {
        ack = 1;
    }

    return ack;
}

void i2c_slave_mode(i2c_t *obj, int enable_slave) {
    if (enable_slave != 0) {
        REG(SER.UINT32) |= SER_SAR0E;   // only slave addr 0 is enabled
    } else {
        REG(SER.UINT32) &= ~SER_SAR0E;  // no slave addr enabled
    }
}

int i2c_slave_receive(i2c_t *obj) {
    int status;
    int retval;

    status = REG(SR1.UINT8[0]) & SR1_AAS0;
    status |= (REG(CR2.UINT8[0]) & CR2_TRS) >> 4;

    switch(status) {
        case 0x01:
            /* the master is writing to this slave */
            retval = 3;
            break;
        case 0x02:
            /* the master is writing to all slave  */
            retval = 2;
            break;
        case 0x03:
            /* the master has requested a read from this slave */
            retval = 1;
            break;
        default :
            /* no data */
            retval = 0;
            break;
    }

    return retval;
}

int i2c_slave_read(i2c_t *obj, char *data, int length) {
    int timeout = 0;
    int count;
    int break_flg = 0;

    if(length <= 0) {
        return 0;
    }
    for (count = 0; ((count < (length + 1)) && (break_flg == 0)); count++) {
        /* There is no timeout, but the upper limit value is set to avoid an infinite loop. */
        while ((i2c_status(obj) & SR2_STOP) || (!(i2c_status(obj) & SR2_RDRF))) {
            /* RIICnSR2.STOP = 1 or RIICnSR2.RDRF = 0 */
            if (i2c_status(obj) & SR2_STOP) {
                /* RIICnSR2.STOP = 1 */
                break_flg = 1;
                break;
            }
            timeout ++;
            if (timeout >= WAIT_TIMEOUT) {
                return -1;
            }
        }
        if (break_flg == 0) {
            if (count == 0) {
                /* dummy read */
                (void)REG(DRR.UINT32);
            } else {
                data[count - 1] = (char)(REG(DRR.UINT32) & 0xFF);
            }
        }
    }
    if (break_flg == 0) {
        (void)i2c_wait_STOP(obj);
    } else {
        if (i2c_status(obj) & SR2_RDRF) {
            if (count <= 1) {
                /* fail safe */
                /* dummy read */
                (void)REG(DRR.UINT32);
            } else {
                data[count - 2] = (char)(REG(DRR.UINT32) & 0xFF);
            }
        }
    }
    /* SR2.STOP = 0 */
    REG(SR2.UINT32) &= ~SR2_STOP;

    return (count - 1);
}

int i2c_slave_write(i2c_t *obj, const char *data, int length) {
    int count = 0;
    int status = 0;

    if(length <= 0) {
        return 0;
    }

    while ((count < length) && (status == 0)) {
        status = i2c_do_write(obj, data[count]);
        count++;
    }
    if (status == 0) {
        /* Wait send end */
        status = i2c_wait_TEND(obj);
        if (status != 0) {
            i2c_set_err_noslave(obj);
            return 0;
        }
    }
    /* dummy read */
    (void)REG(DRR.UINT32);
    (void)i2c_wait_STOP(obj);
    i2c_set_SR2_NACKF_STOP(obj);

    return count;
}

void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
    REG(SAR0.UINT32) = address & 0xfffffffe;
}