summaryrefslogtreecommitdiff
path: root/tmk_core/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_NXP/TARGET_LPC82X/i2c_api.c
blob: 91044d4ab3332be1e0c142d8a3c92813cbb1a34a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <stdlib.h>
#include <string.h>

#include "i2c_api.h"
#include "cmsis.h"
#include "pinmap.h"

#define LPC824_I2C0_FMPLUS 1

#if DEVICE_I2C

static const SWM_Map SWM_I2C_SDA[] = {
    //PINASSIGN Register ID, Pinselect bitfield position
    { 9,  8}, 
    { 9, 24},
    {10,  8},
};

static const SWM_Map SWM_I2C_SCL[] = {
    //PINASSIGN Register ID, Pinselect bitfield position
    { 9, 16},
    {10,  0},
    {10, 16},
};


static int i2c_used = 0;
static uint8_t repeated_start = 0;

#define I2C_DAT(x)          (x->i2c->MSTDAT)
#define I2C_STAT(x)         ((x->i2c->STAT >> 1) & (0x07))

static inline void i2c_power_enable(int ch)
{
    switch(ch) {
        case 0:
            // I2C0, Same as for LPC812
            LPC_SYSCON->SYSAHBCLKCTRL |=  (1 << 5);
            LPC_SYSCON->PRESETCTRL    &= ~(1 << 6);
            LPC_SYSCON->PRESETCTRL    |=  (1 << 6);
            break;
        case 1:
        case 2:
        case 3:
            // I2C1,I2C2 or I2C3. Not available for LPC812
            LPC_SYSCON->SYSAHBCLKCTRL |=  (1 << (20 + ch));
            LPC_SYSCON->PRESETCTRL    &= ~(1 << (13 + ch));
            LPC_SYSCON->PRESETCTRL    |=  (1 << (13 + ch));
            break;
        default:
            break;
    }
}


static inline void i2c_interface_enable(i2c_t *obj) {
  obj->i2c->CFG |=  (1 << 0);  // Enable Master mode
//  obj->i2c->CFG &= ~(1 << 1);  // Disable Slave mode
}


static int get_available_i2c(void) {
    int i;
    for (i=0; i<3; i++) {
        if ((i2c_used & (1 << i)) == 0)
            return i+1;
    }
    return -1;
}

void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
    const SWM_Map *swm;
    uint32_t regVal;
    int i2c_ch = 0;
    
    //LPC824
    //I2C0 can support FM+ but only on P0_11 and P0_10
    if (sda == I2C_SDA && scl == I2C_SCL) {
      //Select I2C mode for P0_11 and P0_10
      LPC_SWM->PINENABLE0 &= ~(0x3 << 11);
      
#if(LPC824_I2C0_FMPLUS == 1)
      // Enable FM+ mode on P0_11, P0_10    
      LPC_IOCON->PIO0_10 &= ~(0x3 << 8);
      LPC_IOCON->PIO0_10 |=  (0x2 << 8); //FM+ mode
      LPC_IOCON->PIO0_11 &= ~(0x3 << 8);
      LPC_IOCON->PIO0_11 |=  (0x2 << 8); //FM+ mode      
#endif
    }
    else {
        //Select any other pin for I2C1, I2C2 or I2C3
        i2c_ch = get_available_i2c();
        if (i2c_ch == -1)
            return;
        i2c_used |= (1 << (i2c_ch - 1));

        swm = &SWM_I2C_SDA[i2c_ch - 1];
        regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
        LPC_SWM->PINASSIGN[swm->n] = regVal |  ((sda >> PIN_SHIFT) << swm->offset);

        swm = &SWM_I2C_SCL[i2c_ch - 1];
        regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
        LPC_SWM->PINASSIGN[swm->n] = regVal |  ((scl >> PIN_SHIFT) << swm->offset);
    }

    switch(i2c_ch) {
        case 0:
            obj->i2c = (LPC_I2C0_Type *)LPC_I2C0;
            break;
        case 1:
            obj->i2c = (LPC_I2C0_Type *)LPC_I2C1;
            break;
        case 2:
            obj->i2c = (LPC_I2C0_Type *)LPC_I2C2;
            break;
        case 3:
            obj->i2c = (LPC_I2C0_Type *)LPC_I2C3;
            break;
        default:
            break;
    }

    // enable power
    i2c_power_enable(i2c_ch);
    // set default frequency at 100k
    i2c_frequency(obj, 100000);   
    i2c_interface_enable(obj);
}


static inline int i2c_status(i2c_t *obj) {
    return I2C_STAT(obj);
}

// Wait until the Master Serial Interrupt (SI) is set
// Timeout when it takes too long.
static int i2c_wait_SI(i2c_t *obj) {
    int timeout = 0;
    while (!(obj->i2c->STAT & (1 << 0))) {
        timeout++;
        if (timeout > 100000) return -1;
    }
    return 0;
}


//Attention. Spec says: First store Address in DAT before setting STA ! 
//Undefined state when using single byte I2C operations and too much delay
//between i2c_start and do_i2c_write(Address).
//Also note that lpc812/824 will immediately continue reading a byte when Address b0 == 1
inline int i2c_start(i2c_t *obj) {
    int status = 0;
    if (repeated_start) {
        obj->i2c->MSTCTL = (1 << 1) | (1 << 0); // STA bit and Continue bit to complete previous RD or WR
        repeated_start = 0;
    } else {
        obj->i2c->MSTCTL = (1 << 1); // STA bit
    }
    return status;
}

//Generate Stop condition and wait until bus is Idle
//Will also send NAK for previous RD
inline int i2c_stop(i2c_t *obj) {
    int timeout = 0;

    // STP bit and Continue bit. Sends NAK to complete previous RD
    obj->i2c->MSTCTL = (1 << 2) | (1 << 0);
    
    //Spin until Ready (b0 == 1)and Status is Idle (b3..b1 == 000)
    while ((obj->i2c->STAT & ((7 << 1) | (1 << 0))) != ((0 << 1) | (1 << 0))) {
        timeout ++;
        if (timeout > 100000) return 1;
    }

    // repeated_start = 0; // bus free
    return 0;
}

//Spec says: first check Idle and status is Ok
static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
    // write the data
    I2C_DAT(obj) = value;
    
    if (!addr)
        obj->i2c->MSTCTL = (1 << 0); //Set continue for data. Should not be set for addr since that uses STA
    
    // wait and return status
    i2c_wait_SI(obj);
    return i2c_status(obj);
}


//Attention, correct Order: wait for data ready, read data, read status, continue, return
//Dont read DAT or STAT when not ready, so dont read after setting continue.
//Results may be invalid when next read is underway.
static inline int i2c_do_read(i2c_t *obj, int last) {
    // wait for it to arrive
    i2c_wait_SI(obj);
    if (!last)
        obj->i2c->MSTCTL = (1 << 0); //ACK and Continue
    
    // return the data
    return (I2C_DAT(obj) & 0xFF);
}


void i2c_frequency(i2c_t *obj, int hz) {
    // No peripheral clock divider on the M0
    uint32_t PCLK = SystemCoreClock;
    
    uint32_t clkdiv = PCLK / (hz * 4) - 1;
    
    obj->i2c->CLKDIV = clkdiv;
    obj->i2c->MSTTIME = 0;
}

// The I2C does a read or a write as a whole operation
// There are two types of error conditions it can encounter
//  1) it can not obtain the bus
//  2) it gets error responses at part of the transmission
//
// We tackle them as follows:
//  1) we retry until we get the bus. we could have a "timeout" if we can not get it
//      which basically turns it in to a 2)
//  2) on error, we use the standard error mechanisms to report/debug
//
// Therefore an I2C transaction should always complete. If it doesn't it is usually
// because something is setup wrong (e.g. wiring), and we don't need to programatically
// check for that
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
    int count, status;
    
    //Store the address+RD and then generate STA
    I2C_DAT(obj) = address | 0x01;
    i2c_start(obj);    

    // Wait for completion of STA and Sending of SlaveAddress+RD and first Read byte
    i2c_wait_SI(obj);
    status = i2c_status(obj);    
    if (status == 0x03) { // NAK on SlaveAddress
        i2c_stop(obj);
        return I2C_ERROR_NO_SLAVE;
    }

    // Read in all except last byte
    for (count = 0; count < (length-1); count++) {
        
      // Wait for it to arrive, note that first byte read after address+RD is already waiting
      i2c_wait_SI(obj);
      status = i2c_status(obj);
      if (status != 0x01) { // RX RDY
        i2c_stop(obj);
        return count;
      }
      data[count] = I2C_DAT(obj) & 0xFF; // Store read byte

      obj->i2c->MSTCTL = (1 << 0); // Send ACK and Continue to read
    }
    
    // Read final byte
    // Wait for it to arrive
    i2c_wait_SI(obj);

    status = i2c_status(obj);
    if (status != 0x01) { // RX RDY
      i2c_stop(obj);
      return count;
    }
    data[count] = I2C_DAT(obj) & 0xFF; // Store final read byte

    // If not repeated start, send stop.
    if (stop) {
        i2c_stop(obj); // Also sends NAK for last read byte
    } else {
        repeated_start = 1;
    }
   
    return length;
}


int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
    int i, status;

    //Store the address+/WR and then generate STA
    I2C_DAT(obj) = address & 0xFE;   
    i2c_start(obj);
    
    // Wait for completion of STA and Sending of SlaveAddress+/WR
    i2c_wait_SI(obj);
    status = i2c_status(obj);    
    if (status == 0x03) { // NAK SlaveAddress
        i2c_stop(obj);
        return I2C_ERROR_NO_SLAVE;
    }
    
    //Write all bytes
    for (i=0; i<length; i++) {
        status = i2c_do_write(obj, data[i], 0);
        if (status != 0x02) { // TX RDY. Handles a Slave NAK on datawrite
            i2c_stop(obj);
            return i;
        }
    }
    
    // If not repeated start, send stop.
    if (stop) {
        i2c_stop(obj);
    } else {
        repeated_start = 1;
    }
    
    return length;
}

void i2c_reset(i2c_t *obj) {
    i2c_stop(obj);
}

int i2c_byte_read(i2c_t *obj, int last) {
    return (i2c_do_read(obj, last) & 0xFF);
//    return (i2c_do_read(obj, last, 0) & 0xFF);    
}

int i2c_byte_write(i2c_t *obj, int data) {
    int ack;
    int status = i2c_do_write(obj, (data & 0xFF), 0);
    
    switch(status) {
        case 2: // TX RDY. Handles a Slave NAK on datawrite
            ack = 1;
            break;
        default:
            ack = 0;
            break;
    }

    return ack;
}


#if DEVICE_I2CSLAVE

#define I2C_SLVDAT(x)        (x->i2c->SLVDAT)
#define I2C_SLVSTAT(x)      ((x->i2c->STAT >> 9) & (0x03))
#define I2C_SLVSI(x)        ((x->i2c->STAT >> 8) & (0x01))
//#define I2C_SLVCNT(x)        (x->i2c->SLVCTL = (1 << 0))
//#define I2C_SLVNAK(x)        (x->i2c->SLVCTL = (1 << 1))

#if(0)
// Wait until the Slave Serial Interrupt (SI) is set
// Timeout when it takes too long.
static int i2c_wait_slave_SI(i2c_t *obj) {
    int timeout = 0;
    while (!(obj->i2c->STAT & (1 << 8))) {
        timeout++;
        if (timeout > 100000) return -1;
    }
    return 0;
}
#endif

void i2c_slave_mode(i2c_t *obj, int enable_slave) {

  if (enable_slave) {
//    obj->i2c->CFG &= ~(1 << 0); //Disable Master mode    
    obj->i2c->CFG |=  (1 << 1); //Enable Slave mode
  }
  else {
//    obj->i2c->CFG |=  (1 << 0); //Enable Master mode    
    obj->i2c->CFG &= ~(1 << 1); //Disable Slave mode
  } 
}

// Wait for next I2C event and find out what is going on
//
int i2c_slave_receive(i2c_t *obj) {
  int addr;
  
  // Check if there is any data pending
  if (! I2C_SLVSI(obj)) {
    return 0; //NoData    
  };
  
  // Check State
  switch(I2C_SLVSTAT(obj)) {
    case 0x0: // Slave address plus R/W received 
              // At least one of the four slave addresses has been matched by hardware.
              // You can figure out which address by checking Slave address match Index in STAT register.
               
              // Get the received address
              addr = I2C_SLVDAT(obj) & 0xFF;
              // Send ACK on address and Continue
              obj->i2c->SLVCTL = (1 << 0); 
              
              if (addr == 0x00) {
                return 2; //WriteGeneral
              }  
              //check the RW bit
              if ((addr & 0x01) == 0x01) {
                return 1; //ReadAddressed
              }
              else {
                return 3; //WriteAddressed
              }
              //break;
    
    case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
              // Oops, should never get here...     
              obj->i2c->SLVCTL = (1 << 1);  // Send NACK on received data, try to recover...
              return 0; //NoData        
              
    case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
              // Oops, should never get here...         
              I2C_SLVDAT(obj) = 0xFF;       // Send dummy data for transmission
              obj->i2c->SLVCTL = (1 << 0);  // Continue and try to recover...
              return 0; //NoData        
    
    case 0x3: // Reserved.
    default:  // Oops, should never get here... 
              obj->i2c->SLVCTL = (1 << 0);  // Continue and try to recover...              
              return 0; //NoData        
              //break; 
  } //switch status  
}

// The dedicated I2C Slave byte read and byte write functions need to be called
// from 'common' mbed I2CSlave API for devices that have separate Master and 
// Slave engines such as the lpc812 and lpc1549.

//Called when Slave is addressed for Write, Slave will receive Data in polling mode
//Parameter last=1 means received byte will be NACKed.
int i2c_slave_byte_read(i2c_t *obj, int last) {
  int data;
  
  // Wait for data
  while (!I2C_SLVSI(obj)); // Wait forever
//if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout

  // Dont bother to check State, were not returning it anyhow..
//if (I2C_SLVSTAT(obj)) == 0x01) {
  // Slave receive. Received data is available (Slave Receiver mode).    
//};

  data = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
  if (last) {
    obj->i2c->SLVCTL = (1 << 1);  // Send NACK on received data and Continue 
  }    
  else {  
    obj->i2c->SLVCTL = (1 << 0);  // Send ACK on data and Continue to read                
  }
 
  return data; 
}


//Called when Slave is addressed for Read, Slave will send Data in polling mode
//
int i2c_slave_byte_write(i2c_t *obj, int data) {

  // Wait until Ready 
  while (!I2C_SLVSI(obj)); // Wait forever
//  if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout

  // Check State
  switch(I2C_SLVSTAT(obj)) {
    case 0x0: // Slave address plus R/W received 
              // At least one of the four slave addresses has been matched by hardware.
              // You can figure out which address by checking Slave address match Index in STAT register.                
              // I2C Restart occurred
              return -1; 
              //break;    
    case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
              // Should not get here... 
              return -2;
              //break;                
    case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
              I2C_SLVDAT(obj) = data & 0xFF; // Store the data for transmission
              obj->i2c->SLVCTL = (1 << 0);   // Continue to send
              
              return 1;    
              //break;      
    case 0x3: // Reserved.
    default:
              // Should not get here... 
              return -3;
              //break; 
  } // switch status
}


//Called when Slave is addressed for Write, Slave will receive Data in polling mode
//Parameter length (>=1) is the maximum allowable number of bytes. All bytes will be ACKed.
int i2c_slave_read(i2c_t *obj, char *data, int length) {
  int count=0;
  
  // Read and ACK all expected bytes
  while (count < length) {
    // Wait for data
    while (!I2C_SLVSI(obj)); // Wait forever
//    if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout

    // Check State
    switch(I2C_SLVSTAT(obj)) {
      case 0x0: // Slave address plus R/W received 
                // At least one of the four slave addresses has been matched by hardware.
                // You can figure out which address by checking Slave address match Index in STAT register.                
                // I2C Restart occurred
                return -1; 
                //break;
    
      case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
                data[count] = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
                obj->i2c->SLVCTL = (1 << 0);          // Send ACK on data and Continue to read                
                break;

      case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
      case 0x3: // Reserved.
      default:  // Should never get here... 
                return -2;
                //break; 
    } // switch status
    
    count++;
  } // for all bytes
    
  return count; // Received the expected number of bytes
}


//Called when Slave is addressed for Read, Slave will send Data in polling mode
//Parameter length (>=1) is the maximum number of bytes. Exit when Slave byte is NACKed.
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
  int count;
  
  // Send and all bytes or Exit on NAK
  for (count=0; count < length; count++) {
    // Wait until Ready for data 
    while (!I2C_SLVSI(obj)); // Wait forever
//    if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout

    // Check State
    switch(I2C_SLVSTAT(obj)) {
      case 0x0: // Slave address plus R/W received 
                // At least one of the four slave addresses has been matched by hardware.
                // You can figure out which address by checking Slave address match Index in STAT register.                
                // I2C Restart occurred
                return -1; 
                //break;    
      case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
                // Should not get here... 
                return -2;
                //break;                
      case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
                I2C_SLVDAT(obj) = data[count] & 0xFF; // Store the data for transmission
                obj->i2c->SLVCTL = (1 << 0);          // Continue to send
                break;      
      case 0x3: // Reserved.
      default:
              // Should not get here... 
              return -3;
              //break; 
    } // switch status
  } // for all bytes
     
  return length; // Transmitted the max number of bytes
}


// Set the four slave addresses. 
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
  obj->i2c->SLVADR0   = (address & 0xFE); // Store address in address 0 register
  obj->i2c->SLVADR1   = (0x00    & 0xFE); // Store general call write address in address 1 register
  obj->i2c->SLVADR2   = (0x01);           // Disable address 2 register
  obj->i2c->SLVADR3   = (0x01);           // Disable address 3 register
  obj->i2c->SLVQUAL0  = (mask & 0xFE);    // Qualifier mask for address 0 register. Any maskbit that is 1 will always be a match 
}

#endif

#endif