summaryrefslogtreecommitdiff
path: root/tmk_core/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_NORDIC/TARGET_MCU_NRF51822/Lib/nordic_sdk/components/libraries/util/app_util.h
blob: 7b0ef5a06af798a05e4dbb29bd37a85caf73af96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
 *
 * The information contained herein is property of Nordic Semiconductor ASA.
 * Terms and conditions of usage are described in detail in NORDIC
 * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
 *
 * Licensees are granted free, non-transferable use of the information. NO
 * WARRANTY of ANY KIND is provided. This heading must NOT be removed from
 * the file.
 *
 */

/** @file
 *
 * @defgroup app_util Utility Functions and Definitions
 * @{
 * @ingroup app_common
 *
 * @brief Various types and definitions available to all applications.
 */

#ifndef APP_UTIL_H__
#define APP_UTIL_H__

#include <stdint.h>
#include <stdbool.h>
#include "compiler_abstraction.h"

enum
{
    UNIT_0_625_MS = 625,                                /**< Number of microseconds in 0.625 milliseconds. */
    UNIT_1_25_MS  = 1250,                               /**< Number of microseconds in 1.25 milliseconds. */
    UNIT_10_MS    = 10000                               /**< Number of microseconds in 10 milliseconds. */
};

/**@brief Macro for doing static (i.e. compile time) assertion.
 *
 * @note If the assertion fails when compiling using Keil, the compiler will report error message
 *       "error: #94: the size of an array must be greater than zero" (while gcc will list the
 *       symbol static_assert_failed, making the error message more readable).
 *       If the supplied expression can not be evaluated at compile time, Keil will report
 *       "error: #28: expression must have a constant value".
 *
 * @note The macro is intentionally implemented not using do while(0), allowing it to be used
 *       outside function blocks (e.g. close to global type- and variable declarations).
 *       If used in a code block, it must be used before any executable code in this block.
 *
 * @param[in]   EXPR   Constant expression to be verified.
 */

#if defined(__GNUC__)
#define STATIC_ASSERT(EXPR) typedef char __attribute__((unused)) static_assert_failed[(EXPR) ? 1 : -1]
#elif defined(__ICCARM__)
#define STATIC_ASSERT(EXPR) extern char static_assert_failed[(EXPR) ? 1 : -1] 
#else
#define STATIC_ASSERT(EXPR) typedef char static_assert_failed[(EXPR) ? 1 : -1]
#endif


/**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */
typedef uint8_t uint16_le_t[2];

/**@brief type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */
typedef uint8_t uint32_le_t[4];

/**@brief Byte array type. */
typedef struct
{
    uint16_t  size;                 /**< Number of array entries. */
    uint8_t * p_data;               /**< Pointer to array entries. */
} uint8_array_t;
    
/**@brief Perform rounded integer division (as opposed to truncating the result).
 *
 * @param[in]   A   Numerator.
 * @param[in]   B   Denominator.
 *
 * @return      Rounded (integer) result of dividing A by B.
 */
#define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B))

/**@brief Check if the integer provided is a power of two.
 *
 * @param[in]   A   Number to be tested.
 *
 * @return      true if value is power of two.
 * @return      false if value not power of two.
 */
#define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) )

/**@brief To convert milliseconds to ticks.
 * @param[in] TIME          Number of milliseconds to convert.
 * @param[in] RESOLUTION    Unit to be converted to in [us/ticks].
 */
#define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION))


/**@brief Perform integer division, making sure the result is rounded up.
 *
 * @details One typical use for this is to compute the number of objects with size B is needed to
 *          hold A number of bytes.
 *
 * @param[in]   A   Numerator.
 * @param[in]   B   Denominator.
 *
 * @return      Integer result of dividing A by B, rounded up.
 */
#define CEIL_DIV(A, B)      \
    /*lint -save -e573 */   \
    ((((A) - 1) / (B)) + 1) \
    /*lint -restore */

/**@brief Function for encoding a uint16 value.
 *
 * @param[in]   value            Value to be encoded.
 * @param[out]  p_encoded_data   Buffer where the encoded data is to be written.
 *
 * @return      Number of bytes written.
 */
static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data)
{
    p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0);
    p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8);
    return sizeof(uint16_t);
}
    
/**@brief Function for encoding a uint32 value.
 *
 * @param[in]   value            Value to be encoded.
 * @param[out]  p_encoded_data   Buffer where the encoded data is to be written.
 *
 * @return      Number of bytes written.
 */
static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data)
{
    p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
    p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
    p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
    p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24);
    return sizeof(uint32_t);
}

/**@brief Function for decoding a uint16 value.
 *
 * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
 *
 * @return      Decoded value.
 */
static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data)
{
        return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) | 
                 (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 ));
}

/**@brief Function for decoding a uint32 value.
 *
 * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
 *
 * @return      Decoded value.
 */
static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data)
{
    return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0)  |
             (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8)  |
             (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) |
             (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 ));
}
    
/** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts.
 *
 *  @details The calculation is based on a linearized version of the battery's discharge
 *           curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and
 *           is considered to be the lower boundary.
 *
 *           The discharge curve for CR2032 is non-linear. In this model it is split into
 *           4 linear sections:
 *           - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV)
 *           - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV)
 *           - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV)
 *           - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV)
 *
 *           These numbers are by no means accurate. Temperature and
 *           load in the actual application is not accounted for!
 *
 *  @param[in] mvolts The voltage in mV
 *
 *  @return    Battery level in percent.
*/
static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts)
{
    uint8_t battery_level;

    if (mvolts >= 3000)
    {
        battery_level = 100;
    }
    else if (mvolts > 2900)
    {
        battery_level = 100 - ((3000 - mvolts) * 58) / 100;
    }
    else if (mvolts > 2740)
    {
        battery_level = 42 - ((2900 - mvolts) * 24) / 160;
    }
    else if (mvolts > 2440)
    {
        battery_level = 18 - ((2740 - mvolts) * 12) / 300;
    }
    else if (mvolts > 2100)
    {
        battery_level = 6 - ((2440 - mvolts) * 6) / 340;
    }
    else
    {
        battery_level = 0;
    }

    return battery_level;
}

/**@brief Function for checking if a pointer value is aligned to a 4 byte boundary.
 *
 * @param[in]   p   Pointer value to be checked.
 *
 * @return      TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise.
 */
static __INLINE bool is_word_aligned(void * p)
{
    return (((uintptr_t)p & 0x03) == 0);
}

#endif // APP_UTIL_H__

/** @} */