summaryrefslogtreecommitdiff
path: root/tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_STM32F4.cpp
blob: 8faac617047ceac5ce5d0fb9e09808adb857190a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#if defined(TARGET_STM32F4)

#include "USBHAL.h"
#include "USBRegs_STM32.h"
#include "pinmap.h"

USBHAL * USBHAL::instance;

static volatile int epComplete = 0;

static uint32_t bufferEnd = 0;
static const uint32_t rxFifoSize = 512;
static uint32_t rxFifoCount = 0;

static uint32_t setupBuffer[MAX_PACKET_SIZE_EP0 >> 2];

uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
    return 0;
}

USBHAL::USBHAL(void) {
    NVIC_DisableIRQ(OTG_FS_IRQn);
    epCallback[0] = &USBHAL::EP1_OUT_callback;
    epCallback[1] = &USBHAL::EP1_IN_callback;
    epCallback[2] = &USBHAL::EP2_OUT_callback;
    epCallback[3] = &USBHAL::EP2_IN_callback;
    epCallback[4] = &USBHAL::EP3_OUT_callback;
    epCallback[5] = &USBHAL::EP3_IN_callback;

    // Enable power and clocking
    RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;

#if defined(TARGET_STM32F407VG) || defined(TARGET_STM32F401RE) || defined(TARGET_STM32F411RE)
    pin_function(PA_8, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF10_OTG_FS));
    pin_function(PA_9, STM_PIN_DATA(STM_MODE_INPUT, GPIO_PULLDOWN, GPIO_AF10_OTG_FS));
    pin_function(PA_10, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_PULLUP, GPIO_AF10_OTG_FS));
    pin_function(PA_11, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF10_OTG_FS));
    pin_function(PA_12, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF10_OTG_FS));
#else
    pin_function(PA_8, STM_PIN_DATA(2, 10));
    pin_function(PA_9, STM_PIN_DATA(0, 0));
    pin_function(PA_10, STM_PIN_DATA(2, 10));
    pin_function(PA_11, STM_PIN_DATA(2, 10));
    pin_function(PA_12, STM_PIN_DATA(2, 10));

    // Set ID pin to open drain with pull-up resistor
    pin_mode(PA_10, OpenDrain);
    GPIOA->PUPDR &= ~(0x3 << 20);
    GPIOA->PUPDR |= 1 << 20;

    // Set VBUS pin to open drain
    pin_mode(PA_9, OpenDrain);
#endif

    RCC->AHB2ENR |= RCC_AHB2ENR_OTGFSEN;

    // Enable interrupts
    OTG_FS->GREGS.GAHBCFG |= (1 << 0);

    // Turnaround time to maximum value - too small causes packet loss
    OTG_FS->GREGS.GUSBCFG |= (0xF << 10);

    // Unmask global interrupts
    OTG_FS->GREGS.GINTMSK |= (1 << 3) | // SOF
                             (1 << 4) | // RX FIFO not empty
                             (1 << 12); // USB reset

    OTG_FS->DREGS.DCFG |= (0x3 << 0) | // Full speed
                          (1 << 2); // Non-zero-length status OUT handshake

    OTG_FS->GREGS.GCCFG |= (1 << 19) | // Enable VBUS sensing
                           (1 << 16); // Power Up

    instance = this;
    NVIC_SetVector(OTG_FS_IRQn, (uint32_t)&_usbisr);
    NVIC_SetPriority(OTG_FS_IRQn, 1);
}

USBHAL::~USBHAL(void) {
}

void USBHAL::connect(void) {
    NVIC_EnableIRQ(OTG_FS_IRQn);
}

void USBHAL::disconnect(void) {
    NVIC_DisableIRQ(OTG_FS_IRQn);
}

void USBHAL::configureDevice(void) {
    // Not needed
}

void USBHAL::unconfigureDevice(void) {
    // Not needed
}

void USBHAL::setAddress(uint8_t address) {
    OTG_FS->DREGS.DCFG |= (address << 4);
    EP0write(0, 0);
}

bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket,
                             uint32_t flags) {
    uint32_t epIndex = endpoint >> 1;

    uint32_t type;
    switch (endpoint) {
        case EP0IN:
        case EP0OUT:
            type = 0;
            break;
        case EPISO_IN:
        case EPISO_OUT:
            type = 1;
        case EPBULK_IN:
        case EPBULK_OUT:
            type = 2;
            break;
        case EPINT_IN:
        case EPINT_OUT:
            type = 3;
            break;
    }

    // Generic in or out EP controls
    uint32_t control = (maxPacket << 0) | // Packet size
                       (1 << 15) | // Active endpoint
                       (type << 18); // Endpoint type

    if (endpoint & 0x1) { // In Endpoint
        // Set up the Tx FIFO
        if (endpoint == EP0IN) {
            OTG_FS->GREGS.DIEPTXF0_HNPTXFSIZ = ((maxPacket >> 2) << 16) |
                                               (bufferEnd << 0);
        }
        else {
            OTG_FS->GREGS.DIEPTXF[epIndex - 1] = ((maxPacket >> 2) << 16) |
                                                 (bufferEnd << 0);
        }
        bufferEnd += maxPacket >> 2;

        // Set the In EP specific control settings
        if (endpoint != EP0IN) {
            control |= (1 << 28); // SD0PID
        }

        control |= (epIndex << 22) | // TxFIFO index
                   (1 << 27); // SNAK
        OTG_FS->INEP_REGS[epIndex].DIEPCTL = control;

        // Unmask the interrupt
        OTG_FS->DREGS.DAINTMSK |= (1 << epIndex);
    }
    else { // Out endpoint
        // Set the out EP specific control settings
        control |= (1 << 26); // CNAK
        OTG_FS->OUTEP_REGS[epIndex].DOEPCTL = control;

        // Unmask the interrupt
        OTG_FS->DREGS.DAINTMSK |= (1 << (epIndex + 16));
    }
    return true;
}

// read setup packet
void USBHAL::EP0setup(uint8_t *buffer) {
    memcpy(buffer, setupBuffer, MAX_PACKET_SIZE_EP0);
}

void USBHAL::EP0readStage(void) {
}

void USBHAL::EP0read(void) {
}

uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
    uint32_t* buffer32 = (uint32_t *) buffer;
    uint32_t length = rxFifoCount;
    for (uint32_t i = 0; i < length; i += 4) {
        buffer32[i >> 2] = OTG_FS->FIFO[0][0];
    }

    rxFifoCount = 0;
    return length;
}

void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
    endpointWrite(0, buffer, size);
}

void USBHAL::EP0getWriteResult(void) {
}

void USBHAL::EP0stall(void) {
    // If we stall the out endpoint here then we have problems transferring
    // and setup requests after the (stalled) get device qualifier requests.
    // TODO: Find out if this is correct behavior, or whether we are doing
    // something else wrong
    stallEndpoint(EP0IN);
//    stallEndpoint(EP0OUT);
}

EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
    uint32_t epIndex = endpoint >> 1;
    uint32_t size = (1 << 19) | // 1 packet
                    (maximumSize << 0); // Packet size
//    if (endpoint == EP0OUT) {
        size |= (1 << 29); // 1 setup packet
//    }
    OTG_FS->OUTEP_REGS[epIndex].DOEPTSIZ = size;
    OTG_FS->OUTEP_REGS[epIndex].DOEPCTL |= (1 << 31) | // Enable endpoint
                                           (1 << 26); // Clear NAK

    epComplete &= ~(1 << endpoint);
    return EP_PENDING;
}

EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
    if (!(epComplete & (1 << endpoint))) {
        return EP_PENDING;
    }

    uint32_t* buffer32 = (uint32_t *) buffer;
    uint32_t length = rxFifoCount;
    for (uint32_t i = 0; i < length; i += 4) {
        buffer32[i >> 2] = OTG_FS->FIFO[endpoint >> 1][0];
    }
    rxFifoCount = 0;
    *bytesRead = length;
    return EP_COMPLETED;
}

EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
    uint32_t epIndex = endpoint >> 1;
    OTG_FS->INEP_REGS[epIndex].DIEPTSIZ = (1 << 19) | // 1 packet
                                          (size << 0); // Size of packet
    OTG_FS->INEP_REGS[epIndex].DIEPCTL |= (1 << 31) | // Enable endpoint
                                          (1 << 26); // CNAK
    OTG_FS->DREGS.DIEPEMPMSK = (1 << epIndex);

    while ((OTG_FS->INEP_REGS[epIndex].DTXFSTS & 0XFFFF) < ((size + 3) >> 2));

    for (uint32_t i=0; i<(size + 3) >> 2; i++, data+=4) {
        OTG_FS->FIFO[epIndex][0] = *(uint32_t *)data;
    }

    epComplete &= ~(1 << endpoint);

    return EP_PENDING;
}

EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
    if (epComplete & (1 << endpoint)) {
        epComplete &= ~(1 << endpoint);
        return EP_COMPLETED;
    }

    return EP_PENDING;
}

void USBHAL::stallEndpoint(uint8_t endpoint) {
    if (endpoint & 0x1) { // In EP
        OTG_FS->INEP_REGS[endpoint >> 1].DIEPCTL |= (1 << 30) | // Disable
                                                    (1 << 21); // Stall
    }
    else {  // Out EP
        OTG_FS->DREGS.DCTL |= (1 << 9); // Set global out NAK
        OTG_FS->OUTEP_REGS[endpoint >> 1].DOEPCTL |= (1 << 30) | // Disable
                                                     (1 << 21); // Stall
    }
}

void USBHAL::unstallEndpoint(uint8_t endpoint) {

}

bool USBHAL::getEndpointStallState(uint8_t endpoint) {
    return false;
}

void USBHAL::remoteWakeup(void) {
}


void USBHAL::_usbisr(void) {
    instance->usbisr();
}


void USBHAL::usbisr(void) {
    if (OTG_FS->GREGS.GINTSTS & (1 << 12)) { // USB Reset
        // Set SNAK bits
        OTG_FS->OUTEP_REGS[0].DOEPCTL |= (1 << 27);
        OTG_FS->OUTEP_REGS[1].DOEPCTL |= (1 << 27);
        OTG_FS->OUTEP_REGS[2].DOEPCTL |= (1 << 27);
        OTG_FS->OUTEP_REGS[3].DOEPCTL |= (1 << 27);

        OTG_FS->DREGS.DIEPMSK = (1 << 0);

        bufferEnd = 0;

        // Set the receive FIFO size
        OTG_FS->GREGS.GRXFSIZ = rxFifoSize >> 2;
        bufferEnd += rxFifoSize >> 2;

        // Create the endpoints, and wait for setup packets on out EP0
        realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
        realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
        endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);

        OTG_FS->GREGS.GINTSTS = (1 << 12);
    }

    if (OTG_FS->GREGS.GINTSTS & (1 << 4)) { // RX FIFO not empty
        uint32_t status = OTG_FS->GREGS.GRXSTSP;

        uint32_t endpoint = (status & 0xF) << 1;
        uint32_t length = (status >> 4) & 0x7FF;
        uint32_t type = (status >> 17) & 0xF;

        rxFifoCount = length;

        if (type == 0x6) {
            // Setup packet
            for (uint32_t i=0; i<length; i+=4) {
                setupBuffer[i >> 2] = OTG_FS->FIFO[0][i >> 2];
            }
            rxFifoCount = 0;
        }

        if (type == 0x4) {
            // Setup complete
            EP0setupCallback();
            endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
        }

        if (type == 0x2) {
            // Out packet
            if (endpoint == EP0OUT) {
                EP0out();
            }
            else {
                epComplete |= (1 << endpoint);
                if ((instance->*(epCallback[endpoint - 2]))()) {
                    epComplete &= (1 << endpoint);
                }
            }
        }

        for (uint32_t i=0; i<rxFifoCount; i+=4) {
            (void) OTG_FS->FIFO[0][0];
        }
        OTG_FS->GREGS.GINTSTS = (1 << 4);
    }

    if (OTG_FS->GREGS.GINTSTS & (1 << 18)) { // In endpoint interrupt
        // Loop through the in endpoints
        for (uint32_t i=0; i<4; i++) {
            if (OTG_FS->DREGS.DAINT & (1 << i)) { // Interrupt is on endpoint

                if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 7)) {// Tx FIFO empty
                    // If the Tx FIFO is empty on EP0 we need to send a further
                    // packet, so call EP0in()
                    if (i == 0) {
                        EP0in();
                    }
                    // Clear the interrupt
                    OTG_FS->INEP_REGS[i].DIEPINT = (1 << 7);
                    // Stop firing Tx empty interrupts
                    // Will get turned on again if another write is called
                    OTG_FS->DREGS.DIEPEMPMSK &= ~(1 << i);
                }

                // If the transfer is complete
                if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 0)) { // Tx Complete
                    epComplete |= (1 << (1 + (i << 1)));
                    OTG_FS->INEP_REGS[i].DIEPINT = (1 << 0);
                }
            }
        }
        OTG_FS->GREGS.GINTSTS = (1 << 18);
    }

    if (OTG_FS->GREGS.GINTSTS & (1 << 3)) { // Start of frame
        SOF((OTG_FS->GREGS.GRXSTSR >> 17) & 0xF);
        OTG_FS->GREGS.GINTSTS = (1 << 3);
    }
}


#endif