summaryrefslogtreecommitdiff
path: root/quantum/beeps.c
blob: edcc84aca453204cd37f7d9425bd1ec7d128ac60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>

#include "beeps.h"
#include "keymap_common.h"
#include "wave.h"

#define PI 3.14159265

#define SAMPLE_DIVIDER 70
#define SAMPLE_RATE (2000000.0/SAMPLE_DIVIDER/256)
// Resistor value of 1/ (2 * PI * 10nF * (2000000 hertz / SAMPLE_DIVIDER / 10)) for 10nF cap

void delay_us(int count) {
  while(count--) {
    _delay_us(1);
  }
}

int voices = 0;
double frequency = 0;
int volume = 0;
long position = 0;

double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
bool sliding = false;
#define RANGE 1000
volatile int i=0; //elements of the wave

// uint8_t sine[128];
// uint8_t tri[128];
// uint8_t squ[128];
// uint8_t* sine_start;
// uint8_t* sine_end;
// uint8_t* tri_start;
// uint8_t* tri_end;

// uint8_t* s_start;
// uint8_t* s_end;
// uint8_t* s_ptr;



void beeps() {
    play_notes();
}

void send_freq(double freq, int vol) {
    int duty = (((double)F_CPU) / freq);
    ICR3 = duty; // Set max to the period
    OCR3A = duty >> (0x10 - vol); // Set compare to half the period
}

void stop_all_notes() {
    voices = 0;
    TIMSK0 &= ~_BV(OCIE0A);
    frequency = 0;
    volume = 0;

    for (int i = 0; i < 8; i++) {
        frequencies[i] = 0;
        volumes[i] = 0;
    }
}

void stop_note(double freq) {
    freq = freq / SAMPLE_RATE;
    for (int i = 7; i >= 0; i--) {
        if (frequencies[i] == freq) {
            frequencies[i] = 0;
            volumes[i] = 0;
            for (int j = i; (j < 7); j++) {
                frequencies[j] = frequencies[j+1];
                frequencies[j+1] = 0;
                volumes[j] = volumes[j+1];
                volumes[j+1] = 0;
            }
        }
    }
    voices--;
    if (voices < 0)
        voices = 0;
    if (voices == 0) {
        TIMSK0 &= ~_BV(OCIE0A);
        frequency = 0;
        volume = 0;
    } else {
        double freq = frequencies[voices - 1];
        int vol = volumes[voices - 1];
        double starting_f = frequency;
        if (frequency < freq) {
            sliding = true;
            for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 500.0)) {
                frequency = f;
            }
            sliding = false;
        } else if (frequency > freq) {
            sliding = true;
            for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 500.0)) {
                frequency = f;
            }
            sliding = false;
        }
        // send_freq(freq, vol);
        frequency = freq;
        volume = vol;
    }
}

void init_notes() {

    // for(int i = 0; i < 128; i++) {
    //     sine[i] = sin(i * PI / 64) * 128 + 128;
    //     tri[i] = 256 - abs((i - 64) * 4);
    // }
    // sine_start = &sine;
    // sine_end = &sine + 128;
    // tri_start = &tri;
    // tri_end = &tri + 128;

 // new


  PLLFRQ = _BV(PDIV2);
  PLLCSR = _BV(PLLE);
  while(!(PLLCSR & _BV(PLOCK)));
  PLLFRQ |= _BV(PLLTM0); /* PCK 48MHz */
  
  /* Init a fast PWM on Timer4 */
  TCCR4A = _BV(COM4A0) | _BV(PWM4A); /* Clear OC4A on Compare Match */
  TCCR4B = _BV(CS40); /* No prescaling => f = PCK/256 = 187500Hz */
  OCR4A = 0;

  /* Enable the OC4A output */
  DDRC |= _BV(PORTC6);



       /* First disable the timer overflow interrupt while we're configuring */
  // TIMSK0 &= ~(1<<TOIE0);
 
  // /* Configure timer4 in normal mode (pure counting, no PWM etc.) */
  // TCCR0A &= ~((1<<WGM01) | (1<<WGM00));
  // TCCR0B &= ~(1<<WGM02);

  // /* Disable Compare Match A interrupt enable (only want overflow) */
  // TIMSK0 &= ~(1<<OCIE0A);
  
  // TCCR0B |= (1<<CS01); // Set bits
  // TCCR0B &= ~(1<<CS00) | ~(1<<CS02);             // Clear bit
   
  // /* Save value globally for later reload in ISR */
  // tcnt0 = 45 - 1; 

  // /* Finally load end enable the timer */
  // TCNT0 = tcnt0;
  // TIMSK0 |= (1<<TOIE0);

}

int max = 0xFF;
float sum = 0;
int value = 128;
float place = 0;

ISR(TIMER0_COMPA_vect) {



    // value = *(sine_start+=(long)frequencies[0]);
    // OCR4A = value;
    // if (sine_start >= sine_end) {
    //     sine_start = &sine[(sine_start - sine_end) % 128];
    // }


    // OCR4A = pgm_read_byte(sine_start);
    // // sine_start = &sine[(sine_start - &sine[0] + (int)frequencies[0]) % 128];
    // sine_start +=  (int)frequencies[0];
    // if (sine_start >= sine_end) {
    //     sine_start = &sine[(sine_start - sine_end) % 128];
    // }
    
    // OCR4A = pgm_read_byte(s_ptr);
    // s_ptr = s_start + (uint8_t)place;
    // OCR4A = pgm_read_byte(s_ptr);


    // SINE
    OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]);
    
    // SQUARE
    // if (((int)place) >= 1024){
    //     OCR4A = 0xFF;
    // } else {
    //     OCR4A = 0x00;
    // }
    
    // SAWTOOTH
    // OCR4A = (int)place / 4;

    // TRIANGLE
    // if (((int)place) >= 1024) {
    //     OCR4A = (int)place / 2;
    // } else {
    //     OCR4A = 2048 - (int)place / 2;
    // }

    place += frequency;
    if (place >= SINE_LENGTH)
        place -= SINE_LENGTH;

}


ISR(TIMER0_COMPB_vect)
{

  /* Disable the interrupt */
  TIMSK0 &= ~_BV(OCIE0B);

}

void play_note(double freq, int vol) {

    freq = freq / SAMPLE_RATE;
    if (freq > 0) {

        // TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (1 << WGM30);
        // TCCR3B = (0 << WGM33) | (1 << WGM32) | (0 << CS32) | (0 << CS31) | (1 << CS30);

      // TIMSK3 = 0x0;
        if (frequency != 0) {
            double starting_f = frequency;
            if (frequency < freq) {
                for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 500.0)) {   
                    frequency = f;
                }
            } else if (frequency > freq) {
                for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 500.0)) {
                    frequency = f;
                }
            }
        }
        // send_freq(freq, vol);
        frequency = freq;
        volume = vol;

        frequencies[voices] = frequency;
        volumes[voices] = volume;
        voices++;
        // position = 0;
        // TCNT0 = 0;
    }
    // ICR3 = 0xFFFF;
    // for (int i = 0; i < 10000; i++) {
    //     OCR3A = round((sin(i*freq)*.5)+.5)*0xFFFF;
    //     // _delay_us(50);
    // }

    // TCCR3A = 0;
    // TCCR3B = 0;


    TIMSK0 &= ~_BV(OCIE0A) | ~_BV(OCIE0B);

    TCCR0A = _BV(WGM01); 
    TCCR0B = _BV(CS01);
    OCR0A = SAMPLE_DIVIDER - 1;  
    OCR0B = 1;

    TIMSK0 |= _BV(OCIE0A);
    // sei();

}

// void note(int x, float length) {
//     DDRC |= (1<<6);
// 	int t = (int)(440*pow(2,-x/12.0)); // starting note
//     for (int y = 0; y < length*1000/t; y++) { // note length
//         PORTC |= (1<<6);
//         delay_us(t);
//         PORTC &= ~(1<<6);
//         delay_us(t);
//     }
// 	PORTC &= ~(1<<6);
// }

// void true_note(float x, float y, float length) {
// 	for (uint32_t i = 0; i < length * 50; i++) {
// 		uint32_t v = (uint32_t) (round(sin(PI*2*i*640000*pow(2, x/12.0))*.5+1 + sin(PI*2*i*640000*pow(2, y/12.0))*.5+1) / 2 * pow(2, 8)); 
// 		for (int u = 0; u < 8; u++) {
// 			if (v & (1 << u) && !(PORTC&(1<<6)))
// 		        PORTC |= (1<<6);
// 		    else if (PORTC&(1<<6))
// 	        	PORTC &= ~(1<<6);
// 		}
// 	}
// 	PORTC &= ~(1<<6);
// }