summaryrefslogtreecommitdiff
path: root/keyboard/infinity/mbed-infinity/USBHAL_KL25Z.cpp
blob: 90f02fa322e64fc509b5f9aa6824bea4ae1791fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#if defined(TARGET_KL25Z) | defined(TARGET_KL43Z) | defined(TARGET_KL46Z) | defined(TARGET_K20D50M) | defined(TARGET_K64F) | defined(TARGET_K22F)

#include "USBHAL.h"

USBHAL * USBHAL::instance;

static volatile int epComplete = 0;

// Convert physical endpoint number to register bit
#define EP(endpoint) (1<<(endpoint))

// Convert physical to logical
#define PHY_TO_LOG(endpoint)    ((endpoint)>>1)

// Get endpoint direction
#define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
#define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)

#define BD_OWN_MASK        (1<<7)
#define BD_DATA01_MASK     (1<<6)
#define BD_KEEP_MASK       (1<<5)
#define BD_NINC_MASK       (1<<4)
#define BD_DTS_MASK        (1<<3)
#define BD_STALL_MASK      (1<<2)

#define TX    1
#define RX    0
#define ODD   0
#define EVEN  1
// this macro waits a physical endpoint number
#define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 *  odd)))

#define SETUP_TOKEN    0x0D
#define IN_TOKEN       0x09
#define OUT_TOKEN      0x01
#define TOK_PID(idx)   ((bdt[idx].info >> 2) & 0x0F)

// for each endpt: 8 bytes
typedef struct BDT {
    uint8_t   info;       // BD[0:7]
    uint8_t   dummy;      // RSVD: BD[8:15]
    uint16_t  byte_count; // BD[16:32]
    uint32_t  address;    // Addr
} BDT;


// there are:
//    * 16 bidirectionnal endpt -> 32 physical endpt
//    * as there are ODD and EVEN buffer -> 32*2 bdt
__attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2];
uint8_t * endpoint_buffer_iso[2*2];

static uint8_t set_addr = 0;
static uint8_t addr = 0;

static uint32_t Data1  = 0x55555555;

static uint32_t frameNumber() {
    return((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF);
}

uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
    return 0;
}

USBHAL::USBHAL(void) {
    // Disable IRQ
    NVIC_DisableIRQ(USB0_IRQn);

#if defined(TARGET_K64F)
    MPU->CESR=0;
#endif
    // fill in callback array
    epCallback[0] = &USBHAL::EP1_OUT_callback;
    epCallback[1] = &USBHAL::EP1_IN_callback;
    epCallback[2] = &USBHAL::EP2_OUT_callback;
    epCallback[3] = &USBHAL::EP2_IN_callback;
    epCallback[4] = &USBHAL::EP3_OUT_callback;
    epCallback[5] = &USBHAL::EP3_IN_callback;
    epCallback[6] = &USBHAL::EP4_OUT_callback;
    epCallback[7] = &USBHAL::EP4_IN_callback;
    epCallback[8] = &USBHAL::EP5_OUT_callback;
    epCallback[9] = &USBHAL::EP5_IN_callback;
    epCallback[10] = &USBHAL::EP6_OUT_callback;
    epCallback[11] = &USBHAL::EP6_IN_callback;
    epCallback[12] = &USBHAL::EP7_OUT_callback;
    epCallback[13] = &USBHAL::EP7_IN_callback;
    epCallback[14] = &USBHAL::EP8_OUT_callback;
    epCallback[15] = &USBHAL::EP8_IN_callback;
    epCallback[16] = &USBHAL::EP9_OUT_callback;
    epCallback[17] = &USBHAL::EP9_IN_callback;
    epCallback[18] = &USBHAL::EP10_OUT_callback;
    epCallback[19] = &USBHAL::EP10_IN_callback;
    epCallback[20] = &USBHAL::EP11_OUT_callback;
    epCallback[21] = &USBHAL::EP11_IN_callback;
    epCallback[22] = &USBHAL::EP12_OUT_callback;
    epCallback[23] = &USBHAL::EP12_IN_callback;
    epCallback[24] = &USBHAL::EP13_OUT_callback;
    epCallback[25] = &USBHAL::EP13_IN_callback;
    epCallback[26] = &USBHAL::EP14_OUT_callback;
    epCallback[27] = &USBHAL::EP14_IN_callback;
    epCallback[28] = &USBHAL::EP15_OUT_callback;
    epCallback[29] = &USBHAL::EP15_IN_callback;

#if defined(TARGET_KL43Z)
    // enable USBFS clock
    SIM->SCGC4 |= SIM_SCGC4_USBFS_MASK;

    // enable the IRC48M clock
    USB0->CLK_RECOVER_IRC_EN |= USB_CLK_RECOVER_IRC_EN_IRC_EN_MASK;

    // enable the USB clock recovery tuning
    USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK;

    // choose usb src clock
    SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;
#elif defined(TARGET_INFINITY)
    // USB clock source: FLL
    SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;

    // enable OTG clock
    SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
#else
    // choose usb src as PLL
    SIM->SOPT2 &= ~SIM_SOPT2_PLLFLLSEL_MASK;
    SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | (1 << SIM_SOPT2_PLLFLLSEL_SHIFT));

    // enable OTG clock
    SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
#endif

    // Attach IRQ
    instance = this;
    NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
    NVIC_EnableIRQ(USB0_IRQn);

    // USB Module Configuration
    // Reset USB Module
    USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
    while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK);

    // Set BDT Base Register
    USB0->BDTPAGE1 = (uint8_t)((uint32_t)bdt>>8);
    USB0->BDTPAGE2 = (uint8_t)((uint32_t)bdt>>16);
    USB0->BDTPAGE3 = (uint8_t)((uint32_t)bdt>>24);

    // Clear interrupt flag
    USB0->ISTAT = 0xff;

    // USB Interrupt Enablers
    USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK |
                   USB_INTEN_SOFTOKEN_MASK |
                   USB_INTEN_ERROREN_MASK  |
                   USB_INTEN_USBRSTEN_MASK;

    // Disable weak pull downs
    USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);

    USB0->USBTRC0 |= 0x40;
}

USBHAL::~USBHAL(void) { }

void USBHAL::connect(void) {
    // enable USB
    USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
    // Pull up enable
    USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
}

void USBHAL::disconnect(void) {
    // disable USB
    USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
    // Pull up disable
    USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;

    //Free buffers if required:
    for (int i = 0; i<(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2; i++) {
        free(endpoint_buffer[i]);
        endpoint_buffer[i] = NULL;
    }
    free(endpoint_buffer_iso[2]);
    endpoint_buffer_iso[2] = NULL;
    free(endpoint_buffer_iso[0]);
    endpoint_buffer_iso[0] = NULL;
}

void USBHAL::configureDevice(void) {
    // not needed
}

void USBHAL::unconfigureDevice(void) {
    // not needed
}

void USBHAL::setAddress(uint8_t address) {
    // we don't set the address now otherwise the usb controller does not ack
    // we set a flag instead
    // see usbisr when an IN token is received
    set_addr = 1;
    addr = address;
}

bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
    uint32_t handshake_flag = 0;
    uint8_t * buf;

    if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
        return false;
    }

    uint32_t log_endpoint = PHY_TO_LOG(endpoint);

    if ((flags & ISOCHRONOUS) == 0) {
        handshake_flag = USB_ENDPT_EPHSHK_MASK;
        if (IN_EP(endpoint)) {
            if (endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] == NULL)
                endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] = (uint8_t *) malloc (64*2);
            buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0];
        } else {
            if (endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] == NULL)
                endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] = (uint8_t *) malloc (64*2);
            buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0];
        }
    } else {
        if (IN_EP(endpoint)) {
            if (endpoint_buffer_iso[2] == NULL)
                endpoint_buffer_iso[2] = (uint8_t *) malloc (1023*2);
            buf = &endpoint_buffer_iso[2][0];
        } else {
            if (endpoint_buffer_iso[0] == NULL)
                endpoint_buffer_iso[0] = (uint8_t *) malloc (1023*2);
            buf = &endpoint_buffer_iso[0][0];
        }
    }

    // IN endpt -> device to host (TX)
    if (IN_EP(endpoint)) {
        USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
                                              USB_ENDPT_EPTXEN_MASK;  // en TX (IN) tran
        bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf;
        bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
    }
    // OUT endpt -> host to device (RX)
    else {
        USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
                                              USB_ENDPT_EPRXEN_MASK;  // en RX (OUT) tran.
        bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket;
        bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address    = (uint32_t) buf;
        bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info       = BD_OWN_MASK | BD_DTS_MASK;
        bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info       = 0;
    }

    Data1 |= (1 << endpoint);

    return true;
}

// read setup packet
void USBHAL::EP0setup(uint8_t *buffer) {
    uint32_t sz;
    endpointReadResult(EP0OUT, buffer, &sz);
}

void USBHAL::EP0readStage(void) {
    Data1 &= ~1UL;  // set DATA0
    bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK);
}

void USBHAL::EP0read(void) {
    uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0);
    bdt[idx].byte_count = MAX_PACKET_SIZE_EP0;
}

uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
    uint32_t sz;
    endpointReadResult(EP0OUT, buffer, &sz);
    return sz;
}

void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
    endpointWrite(EP0IN, buffer, size);
}

void USBHAL::EP0getWriteResult(void) {
}

void USBHAL::EP0stall(void) {
    stallEndpoint(EP0OUT);
}

EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
    endpoint = PHY_TO_LOG(endpoint);
    uint32_t idx = EP_BDT_IDX(endpoint, RX, 0);
    bdt[idx].byte_count = maximumSize;
    return EP_PENDING;
}

EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
    uint32_t n, sz, idx, setup = 0;
    uint8_t not_iso;
    uint8_t * ep_buf;

    uint32_t log_endpoint = PHY_TO_LOG(endpoint);

    if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
        return EP_INVALID;
    }

    // if read on a IN endpoint -> error
    if (IN_EP(endpoint)) {
        return EP_INVALID;
    }

    idx = EP_BDT_IDX(log_endpoint, RX, 0);
    sz  = bdt[idx].byte_count;
    not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;

    //for isochronous endpoint, we don't wait an interrupt
    if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) {
        return EP_PENDING;
    }

    if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
        setup = 1;
    }

    // non iso endpoint
    if (not_iso) {
        ep_buf = endpoint_buffer[idx];
    } else {
        ep_buf = endpoint_buffer_iso[0];
    }

    for (n = 0; n < sz; n++) {
        buffer[n] = ep_buf[n];
    }

    if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) {
        if (setup && (buffer[6] == 0))  // if no setup data stage,
            Data1 &= ~1UL;              // set DATA0
        else
            Data1 ^= (1 << endpoint);
    }

    if (((Data1 >> endpoint) & 1)) {
        bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK;
    }
    else {
        bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK;
    }

    USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
    *bytesRead = sz;

    epComplete &= ~EP(endpoint);
    return EP_COMPLETED;
}

EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
    uint32_t idx, n;
    uint8_t * ep_buf;

    if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
        return EP_INVALID;
    }

    // if write on a OUT endpoint -> error
    if (OUT_EP(endpoint)) {
        return EP_INVALID;
    }

    idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0);
    bdt[idx].byte_count = size;


    // non iso endpoint
    if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) {
        ep_buf = endpoint_buffer[idx];
    } else {
        ep_buf = endpoint_buffer_iso[2];
    }

    for (n = 0; n < size; n++) {
        ep_buf[n] = data[n];
    }

    if ((Data1 >> endpoint) & 1) {
        bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
    } else {
        bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
    }

    Data1 ^= (1 << endpoint);

    return EP_PENDING;
}

EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
    if (epComplete & EP(endpoint)) {
        epComplete &= ~EP(endpoint);
        return EP_COMPLETED;
    }

    return EP_PENDING;
}

void USBHAL::stallEndpoint(uint8_t endpoint) {
    USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
}

void USBHAL::unstallEndpoint(uint8_t endpoint) {
    USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
}

bool USBHAL::getEndpointStallState(uint8_t endpoint) {
    uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK);
    return (stall) ? true : false;
}

void USBHAL::remoteWakeup(void) {
    // [TODO]
}


void USBHAL::_usbisr(void) {
    instance->usbisr();
}


void USBHAL::usbisr(void) {
    uint8_t i;
    uint8_t istat = USB0->ISTAT;

    // reset interrupt
    if (istat & USB_ISTAT_USBRST_MASK) {
        // disable all endpt
        for(i = 0; i < 16; i++) {
            USB0->ENDPOINT[i].ENDPT = 0x00;
        }

        // enable control endpoint
        realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
        realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);

        Data1 = 0x55555555;
        USB0->CTL |=  USB_CTL_ODDRST_MASK;

        USB0->ISTAT   =  0xFF;  // clear all interrupt status flags
        USB0->ERRSTAT =  0xFF;  // clear all error flags
        USB0->ERREN   =  0xFF;  // enable error interrupt sources
        USB0->ADDR    =  0x00;  // set default address

        return;
    }

    // resume interrupt
    if (istat & USB_ISTAT_RESUME_MASK) {
        USB0->ISTAT = USB_ISTAT_RESUME_MASK;
    }

    // SOF interrupt
    if (istat & USB_ISTAT_SOFTOK_MASK) {
        USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;
        // SOF event, read frame number
        SOF(frameNumber());
    }

    // stall interrupt
    if (istat & 1<<7) {
        if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK)
            USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
        USB0->ISTAT |= USB_ISTAT_STALL_MASK;
    }

    // token interrupt
    if (istat & 1<<3) {
        uint32_t num  = (USB0->STAT >> 4) & 0x0F;
        uint32_t dir  = (USB0->STAT >> 3) & 0x01;
        uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;

        // setup packet
        if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
            Data1 &= ~0x02;
            bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
            bdt[EP_BDT_IDX(0, TX, ODD)].info  &= ~BD_OWN_MASK;

            // EP0 SETUP event (SETUP data received)
            EP0setupCallback();

        } else {
            // OUT packet
            if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) {
                if (num == 0)
                    EP0out();
                else {
                    epComplete |= (1 << EP(num));
                    if ((instance->*(epCallback[EP(num) - 2]))()) {
                        epComplete &= ~(1 << EP(num));
                    }
                }
            }

            // IN packet
            if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) {
                if (num == 0) {
                    EP0in();
                    if (set_addr == 1) {
                        USB0->ADDR = addr & 0x7F;
                        set_addr = 0;
                    }
                }
                else {
                    epComplete |= (1 << (EP(num) + 1));
                    if ((instance->*(epCallback[EP(num) + 1 - 2]))()) {
                        epComplete &= ~(1 << (EP(num) + 1));
                    }
                }
            }
        }

        USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
    }

    // sleep interrupt
    if (istat & 1<<4) {
        USB0->ISTAT |= USB_ISTAT_SLEEP_MASK;
    }

    // error interrupt
    if (istat & USB_ISTAT_ERROR_MASK) {
        USB0->ERRSTAT = 0xFF;
        USB0->ISTAT |= USB_ISTAT_ERROR_MASK;
    }
}


#endif