/* Copyright 2021 QMK * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "split_util.h" #include "matrix.h" #include "keyboard.h" #include "timer.h" #include "transport.h" #include "wait.h" #include "debug.h" #include "usb_util.h" #include "bootloader.h" #ifdef EE_HANDS # include "eeconfig.h" #endif #if defined(RGBLIGHT_ENABLE) && defined(RGBLED_SPLIT) # include "rgblight.h" #endif #ifndef SPLIT_USB_TIMEOUT # define SPLIT_USB_TIMEOUT 2000 #endif #ifndef SPLIT_USB_TIMEOUT_POLL # define SPLIT_USB_TIMEOUT_POLL 10 #endif // Max number of consecutive failed communications (one per scan cycle) before the communication is seen as disconnected. // Set to 0 to disable the disconnection check altogether. #ifndef SPLIT_MAX_CONNECTION_ERRORS # define SPLIT_MAX_CONNECTION_ERRORS 10 #endif // SPLIT_MAX_CONNECTION_ERRORS // How long (in milliseconds) to block all connection attempts after the communication has been flagged as disconnected. // One communication attempt will be allowed everytime this amount of time has passed since the last attempt. If that attempt succeeds, the communication is seen as working again. // Set to 0 to disable communication throttling while disconnected #ifndef SPLIT_CONNECTION_CHECK_TIMEOUT # define SPLIT_CONNECTION_CHECK_TIMEOUT 500 #endif // SPLIT_CONNECTION_CHECK_TIMEOUT static uint8_t connection_errors = 0; volatile bool isLeftHand = true; #if defined(SPLIT_USB_DETECT) _Static_assert((SPLIT_USB_TIMEOUT / SPLIT_USB_TIMEOUT_POLL) <= UINT16_MAX, "Please lower SPLIT_USB_TIMEOUT and/or increase SPLIT_USB_TIMEOUT_POLL."); static bool usbIsActive(void) { for (uint16_t i = 0; i < (SPLIT_USB_TIMEOUT / SPLIT_USB_TIMEOUT_POLL); i++) { // This will return true if a USB connection has been established if (usb_connected_state()) { return true; } wait_ms(SPLIT_USB_TIMEOUT_POLL); } return false; } #else static inline bool usbIsActive(void) { return usb_vbus_state(); } #endif #if defined(SPLIT_WATCHDOG_ENABLE) # if !defined(SPLIT_WATCHDOG_TIMEOUT) # if defined(SPLIT_USB_TIMEOUT) # define SPLIT_WATCHDOG_TIMEOUT (SPLIT_USB_TIMEOUT + 100) # else # define SPLIT_WATCHDOG_TIMEOUT 3000 # endif # endif # if defined(SPLIT_USB_DETECT) _Static_assert(SPLIT_USB_TIMEOUT < SPLIT_WATCHDOG_TIMEOUT, "SPLIT_WATCHDOG_TIMEOUT should not be below SPLIT_USB_TIMEOUT."); # endif _Static_assert(SPLIT_MAX_CONNECTION_ERRORS > 0, "SPLIT_WATCHDOG_ENABLE requires SPLIT_MAX_CONNECTION_ERRORS be above 0 for a functioning disconnection check."); static uint32_t split_watchdog_started = 0; static bool split_watchdog_done = false; void split_watchdog_init(void) { split_watchdog_started = timer_read32(); } void split_watchdog_update(bool done) { split_watchdog_done = done; } bool split_watchdog_check(void) { if (!is_transport_connected()) { split_watchdog_done = false; } return split_watchdog_done; } void split_watchdog_task(void) { if (!split_watchdog_done && !is_keyboard_master()) { if (timer_elapsed32(split_watchdog_started) > SPLIT_WATCHDOG_TIMEOUT) { mcu_reset(); } } } #endif // defined(SPLIT_WATCHDOG_ENABLE) #ifdef SPLIT_HAND_MATRIX_GRID void matrix_io_delay(void); static uint8_t peek_matrix_intersection(pin_t out_pin, pin_t in_pin) { setPinInputHigh(in_pin); setPinOutput(out_pin); writePinLow(out_pin); // It's almost unnecessary, but wait until it's down to low, just in case. wait_us(1); uint8_t pin_state = readPin(in_pin); // Set out_pin to a setting that is less susceptible to noise. setPinInputHigh(out_pin); matrix_io_delay(); // Wait for the pull-up to go HIGH. return pin_state; } #endif __attribute__((weak)) bool is_keyboard_left(void) { #if defined(SPLIT_HAND_PIN) // Test pin SPLIT_HAND_PIN for High/Low, if low it's right hand # ifdef SPLIT_HAND_PIN_LOW_IS_LEFT return !readPin(SPLIT_HAND_PIN); # else return readPin(SPLIT_HAND_PIN); # endif #elif defined(SPLIT_HAND_MATRIX_GRID) # ifdef SPLIT_HAND_MATRIX_GRID_LOW_IS_RIGHT return peek_matrix_intersection(SPLIT_HAND_MATRIX_GRID); # else return !peek_matrix_intersection(SPLIT_HAND_MATRIX_GRID); # endif #elif defined(EE_HANDS) return eeconfig_read_handedness(); #elif defined(MASTER_RIGHT) return !is_keyboard_master(); #endif return is_keyboard_master(); } __attribute__((weak)) bool is_keyboard_master(void) { static enum { UNKNOWN, MASTER, SLAVE } usbstate = UNKNOWN; // only check once, as this is called often if (usbstate == UNKNOWN) { usbstate = usbIsActive() ? MASTER : SLAVE; // Avoid NO_USB_STARTUP_CHECK - Disable USB as the previous checks seem to enable it somehow if (usbstate == SLAVE) { usb_disconnect(); } } return (usbstate == MASTER); } // this code runs before the keyboard is fully initialized void split_pre_init(void) { #if defined(SPLIT_HAND_PIN) setPinInput(SPLIT_HAND_PIN); wait_us(100); #elif defined(EE_HANDS) if (!eeconfig_is_enabled()) { eeconfig_init(); } // TODO: Remove once ARM has a way to configure EECONFIG_HANDEDNESS within the emulated eeprom via dfu-util or another tool # if defined(INIT_EE_HANDS_LEFT) || defined(INIT_EE_HANDS_RIGHT) # if defined(INIT_EE_HANDS_LEFT) # pragma message "Faking EE_HANDS for left hand" const bool should_be_left = true; # else # pragma message "Faking EE_HANDS for right hand" const bool should_be_left = false; # endif bool is_left = eeconfig_read_handedness(); if (is_left != should_be_left) { eeconfig_update_handedness(should_be_left); } # endif // defined(INIT_EE_HANDS_LEFT) || defined(INIT_EE_HANDS_RIGHT) #endif isLeftHand = is_keyboard_left(); #if defined(RGBLIGHT_ENABLE) && defined(RGBLED_SPLIT) uint8_t num_rgb_leds_split[2] = RGBLED_SPLIT; if (isLeftHand) { rgblight_set_clipping_range(0, num_rgb_leds_split[0]); } else { rgblight_set_clipping_range(num_rgb_leds_split[0], num_rgb_leds_split[1]); } #endif if (is_keyboard_master()) { #if defined(USE_I2C) && defined(SSD1306OLED) matrix_master_OLED_init(); #endif transport_master_init(); } } // this code runs after the keyboard is fully initialized // - avoids race condition during matrix_init_quantum where slave can start // receiving before the init process has completed void split_post_init(void) { if (!is_keyboard_master()) { transport_slave_init(); #if defined(SPLIT_WATCHDOG_ENABLE) split_watchdog_init(); #endif } } bool is_transport_connected(void) { return connection_errors < SPLIT_MAX_CONNECTION_ERRORS; } bool transport_master_if_connected(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { #if SPLIT_MAX_CONNECTION_ERRORS > 0 && SPLIT_CONNECTION_CHECK_TIMEOUT > 0 // Throttle transaction attempts if target doesn't seem to be connected // Without this, a solo half becomes unusable due to constant read timeouts static uint16_t connection_check_timer = 0; const bool is_disconnected = !is_transport_connected(); if (is_disconnected && timer_elapsed(connection_check_timer) < SPLIT_CONNECTION_CHECK_TIMEOUT) { return false; } #endif // SPLIT_MAX_CONNECTION_ERRORS > 0 && SPLIT_CONNECTION_CHECK_TIMEOUT > 0 __attribute__((unused)) bool okay = transport_master(master_matrix, slave_matrix); #if SPLIT_MAX_CONNECTION_ERRORS > 0 if (!okay) { if (connection_errors < UINT8_MAX) { connection_errors++; } # if SPLIT_CONNECTION_CHECK_TIMEOUT > 0 bool connected = is_transport_connected(); if (!connected) { connection_check_timer = timer_read(); dprintln("Target disconnected, throttling connection attempts"); } return connected; } else if (is_disconnected) { dprintln("Target connected"); # endif // SPLIT_CONNECTION_CHECK_TIMEOUT > 0 } connection_errors = 0; #endif // SPLIT_MAX_CONNECTION_ERRORS > 0 return true; }