/* Copyright 2012 Jun Wako Copyright 2014 Jack Humbert This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #if defined(__AVR__) #include #endif #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" /* Set 0 if debouncing isn't needed */ #ifndef DEBOUNCING_DELAY # define DEBOUNCING_DELAY 5 #endif static uint8_t debouncing = DEBOUNCING_DELAY; static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; #if DIODE_DIRECTION == ROW2COL static matrix_row_t matrix_reversed[MATRIX_COLS]; static matrix_row_t matrix_reversed_debouncing[MATRIX_COLS]; #endif #if MATRIX_COLS > 16 #define SHIFTER 1UL #else #define SHIFTER 1 #endif static matrix_row_t read_cols(void); static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); __attribute__ ((weak)) void matrix_init_quantum(void) { matrix_init_kb(); } __attribute__ ((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); } __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } // void matrix_power_up(void) { // #if DIODE_DIRECTION == COL2ROW // for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { // /* DDRxn */ // _SFR_IO8((row_pins[r] >> 4) + 1) |= _BV(row_pins[r] & 0xF); // toggle_row(r); // } // for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { // /* PORTxn */ // _SFR_IO8((col_pins[c] >> 4) + 2) |= _BV(col_pins[c] & 0xF); // } // #else // for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { // /* DDRxn */ // _SFR_IO8((col_pins[c] >> 4) + 1) |= _BV(col_pins[c] & 0xF); // toggle_col(c); // } // for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { // /* PORTxn */ // _SFR_IO8((row_pins[r] >> 4) + 2) |= _BV(row_pins[r] & 0xF); // } // #endif // } void matrix_init(void) { // To use PORTF disable JTAG with writing JTD bit twice within four cycles. #ifdef __AVR_ATmega32U4__ MCUCR |= _BV(JTD); MCUCR |= _BV(JTD); #endif // initialize row and col unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } matrix_init_quantum(); } uint8_t matrix_scan(void) { #if DIODE_DIRECTION == COL2ROW for (uint8_t i = 0; i < MATRIX_ROWS; i++) { select_row(i); wait_us(30); // without this wait read unstable value. matrix_row_t cols = read_cols(); if (matrix_debouncing[i] != cols) { matrix_debouncing[i] = cols; if (debouncing) { debug("bounce!: "); debug_hex(debouncing); debug("\n"); } debouncing = DEBOUNCING_DELAY; } unselect_rows(); } if (debouncing) { if (--debouncing) { wait_ms(1); } else { for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = matrix_debouncing[i]; } } } #else for (uint8_t i = 0; i < MATRIX_COLS; i++) { select_row(i); wait_us(30); // without this wait read unstable value. matrix_row_t rows = read_cols(); if (matrix_reversed_debouncing[i] != rows) { matrix_reversed_debouncing[i] = rows; if (debouncing) { debug("bounce!: "); debug_hex(debouncing); debug("\n"); } debouncing = DEBOUNCING_DELAY; } unselect_rows(); } if (debouncing) { if (--debouncing) { wait_ms(1); } else { for (uint8_t i = 0; i < MATRIX_COLS; i++) { matrix_reversed[i] = matrix_reversed_debouncing[i]; } } } for (uint8_t y = 0; y < MATRIX_ROWS; y++) { matrix_row_t row = 0; for (uint8_t x = 0; x < MATRIX_COLS; x++) { row |= ((matrix_reversed[x] & (1<> y) << x; } matrix[y] = row; } #endif matrix_scan_quantum(); return 1; } bool matrix_is_modified(void) { if (debouncing) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1> 4) + 1) &= ~_BV(pin & 0xF); _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); } } static matrix_row_t read_cols(void) { matrix_row_t result = 0; #if DIODE_DIRECTION == COL2ROW for(int x = 0; x < MATRIX_COLS; x++) { int pin = col_pins[x]; #else for(int x = 0; x < MATRIX_ROWS; x++) { int pin = row_pins[x]; #endif result |= (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)) ? 0 : (SHIFTER << x); } return result; } static void unselect_rows(void) { #if DIODE_DIRECTION == COL2ROW for(int x = 0; x < MATRIX_ROWS; x++) { int pin = row_pins[x]; #else for(int x = 0; x < MATRIX_COLS; x++) { int pin = col_pins[x]; #endif _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); } } static void select_row(uint8_t row) { #if DIODE_DIRECTION == COL2ROW int pin = row_pins[row]; #else int pin = col_pins[row]; #endif _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); }