#include #include "timer.h" static uint32_t ticks_offset = 0; static uint32_t last_ticks = 0; static uint32_t ms_offset = 0; #if CH_CFG_ST_RESOLUTION < 32 static uint32_t last_systime = 0; static uint32_t overflow = 0; #endif // Get the current system time in ticks as a 32-bit number. // This function must be called from within a system lock zone (so that it can safely use and update the static data). static inline uint32_t get_system_time_ticks(void) { uint32_t systime = (uint32_t)chVTGetSystemTimeX(); #if CH_CFG_ST_RESOLUTION < 32 // If the real system timer resolution is less than 32 bits, provide the missing bits by checking for the counter // overflow. For this to work, this function must be called at least once for every overflow of the system timer. // In the 16-bit case, the corresponding times are: // - CH_CFG_ST_FREQUENCY = 100000, overflow will occur every ~0.65 seconds // - CH_CFG_ST_FREQUENCY = 10000, overflow will occur every ~6.5 seconds // - CH_CFG_ST_FREQUENCY = 1000, overflow will occur every ~65 seconds if (systime < last_systime) { overflow += ((uint32_t)1) << CH_CFG_ST_RESOLUTION; } last_systime = systime; systime += overflow; #endif return systime; } #if CH_CFG_ST_RESOLUTION < 32 static virtual_timer_t update_timer; // Update the system tick counter every half of the timer overflow period; this should keep the tick counter correct // even if something blocks timer interrupts for 1/2 of the timer overflow period. # define UPDATE_INTERVAL (((sysinterval_t)1) << (CH_CFG_ST_RESOLUTION - 1)) // VT callback function to keep the overflow bits of the system tick counter updated. static void update_fn(struct ch_virtual_timer *timer, void *arg) { (void)arg; chSysLockFromISR(); get_system_time_ticks(); chVTSetI(&update_timer, UPDATE_INTERVAL, update_fn, NULL); chSysUnlockFromISR(); } #endif // The highest multiple of CH_CFG_ST_FREQUENCY that fits into uint32_t. This number of ticks will necessarily // correspond to some integer number of seconds. #define OVERFLOW_ADJUST_TICKS ((uint32_t)((UINT32_MAX / CH_CFG_ST_FREQUENCY) * CH_CFG_ST_FREQUENCY)) // The time in milliseconds which corresponds to OVERFLOW_ADJUST_TICKS ticks (this is a precise conversion, because // OVERFLOW_ADJUST_TICKS corresponds to an integer number of seconds). #define OVERFLOW_ADJUST_MS (TIME_I2MS(OVERFLOW_ADJUST_TICKS)) void timer_init(void) { timer_clear(); #if CH_CFG_ST_RESOLUTION < 32 chVTObjectInit(&update_timer); chVTSet(&update_timer, UPDATE_INTERVAL, update_fn, NULL); #endif } void timer_clear(void) { chSysLock(); ticks_offset = get_system_time_ticks(); last_ticks = 0; ms_offset = 0; chSysUnlock(); } uint16_t timer_read(void) { return (uint16_t)timer_read32(); } uint32_t timer_read32(void) { chSysLock(); uint32_t ticks = get_system_time_ticks() - ticks_offset; if (ticks < last_ticks) { // The 32-bit tick counter overflowed and wrapped around. We cannot just extend the counter to 64 bits here, // because TIME_I2MS() may encounter overflows when handling a 64-bit argument; therefore the solution here is // to subtract a reasonably large number of ticks from the tick counter to bring its value below the 32-bit // limit again, and then add the equivalent number of milliseconds to the converted value. (Adjusting just the // converted value to account for 2**32 ticks is not possible in general, because 2**32 ticks may not correspond // to an integer number of milliseconds). ticks -= OVERFLOW_ADJUST_TICKS; ticks_offset += OVERFLOW_ADJUST_TICKS; ms_offset += OVERFLOW_ADJUST_MS; } last_ticks = ticks; uint32_t ms_offset_copy = ms_offset; // read while still holding the lock to ensure a consistent value chSysUnlock(); return (uint32_t)TIME_I2MS(ticks) + ms_offset_copy; } uint16_t timer_elapsed(uint16_t last) { return TIMER_DIFF_16(timer_read(), last); } uint32_t timer_elapsed32(uint32_t last) { return TIMER_DIFF_32(timer_read32(), last); }