// Copyright 2022 Stefan Kerkmann // Copyright 2020 Jack Humbert // Copyright 2020 JohSchneider // SPDX-License-Identifier: GPL-2.0-or-later // Audio Driver: PWM the duty-cycle is always kept at 50%, and the pwm-period is // adjusted to match the frequency of a note to be played back. This driver uses // the chibios-PWM system to produce a square-wave on specific output pins that // are connected to the PWM hardware. The hardware directly toggles the pin via // its alternate function. see your MCUs data-sheet for which pin can be driven // by what timer - looking for TIMx_CHy and the corresponding alternate // function. #include "audio.h" #include "gpio.h" #if !defined(AUDIO_PIN) # error "Audio feature enabled, but no pin selected - see docs/feature_audio under the ARM PWM settings" #endif #if !defined(AUDIO_PWM_COUNTER_FREQUENCY) # define AUDIO_PWM_COUNTER_FREQUENCY 100000 #endif extern bool playing_note; extern bool playing_melody; extern uint8_t note_timbre; static PWMConfig pwmCFG = {.frequency = AUDIO_PWM_COUNTER_FREQUENCY, /* PWM clock frequency */ .period = 2, .callback = NULL, .channels = {[(AUDIO_PWM_CHANNEL - 1)] = {.mode = PWM_OUTPUT_ACTIVE_HIGH, .callback = NULL}}}; static float channel_1_frequency = 0.0f; void channel_1_set_frequency(float freq) { channel_1_frequency = freq; if (freq <= 0.0) { // a pause/rest has freq=0 return; } pwmcnt_t period = (pwmCFG.frequency / freq); chSysLockFromISR(); pwmChangePeriodI(&AUDIO_PWM_DRIVER, period); pwmEnableChannelI(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1, // adjust the duty-cycle so that the output is for 'note_timbre' duration HIGH PWM_PERCENTAGE_TO_WIDTH(&AUDIO_PWM_DRIVER, (100 - note_timbre) * 100)); chSysUnlockFromISR(); } float channel_1_get_frequency(void) { return channel_1_frequency; } void channel_1_start(void) { pwmStop(&AUDIO_PWM_DRIVER); pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG); } void channel_1_stop(void) { pwmStop(&AUDIO_PWM_DRIVER); } static virtual_timer_t audio_vt; static void audio_callback(virtual_timer_t *vtp, void *p); // a regular timer task, that checks the note to be currently played and updates // the pwm to output that frequency. static void audio_callback(virtual_timer_t *vtp, void *p) { float freq; // TODO: freq_alt if (audio_update_state()) { freq = audio_get_processed_frequency(0); // freq_alt would be index=1 channel_1_set_frequency(freq); } chSysLockFromISR(); chVTSetI(&audio_vt, TIME_MS2I(16), audio_callback, NULL); chSysUnlockFromISR(); } void audio_driver_initialize(void) { pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG); // connect the AUDIO_PIN to the PWM hardware #if defined(USE_GPIOV1) // STM32F103C8, RP2040 palSetLineMode(AUDIO_PIN, AUDIO_PWM_PAL_MODE); #else // GPIOv2 (or GPIOv3 for f4xx, which is the same/compatible at this command) palSetLineMode(AUDIO_PIN, PAL_MODE_ALTERNATE(AUDIO_PWM_PAL_MODE)); #endif chVTObjectInit(&audio_vt); } void audio_driver_start(void) { channel_1_stop(); channel_1_start(); if ((playing_note || playing_melody) && !chVTIsArmed(&audio_vt)) { // a whole note is one beat, which is - per definition in // musical_notes.h - set to 64 the longest note is // BREAVE_DOT=128+64=192, the shortest SIXTEENTH=4 the tempo (which // might vary!) is in bpm (beats per minute) therefore: if the timer // ticks away at 64Hz (~16.6ms) audio_update_state is called just often // enough to not miss any notes chVTSet(&audio_vt, TIME_MS2I(16), audio_callback, NULL); } } void audio_driver_stop(void) { channel_1_stop(); chVTReset(&audio_vt); }