/* * Copyright 2018-2023 Jack Humbert * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "gpio.h" #include "hal_pal.h" #include "hal_pal_lld.h" #include "quantum.h" #include // STM32-specific watchdog config calculations // timeout = 31.25us * PR * (RL + 1) #define _STM32_IWDG_LSI(us) ((us) / 31.25) #define STM32_IWDG_PR_US(us) (uint8_t)(log(_STM32_IWDG_LSI(us)) / log(2) - 11) #define STM32_IWDG_PR_MS(s) STM32_IWDG_PR_US(s * 1000.0) #define STM32_IWDG_PR_S(s) STM32_IWDG_PR_US(s * 1000000.0) #define _STM32_IWDG_SCALAR(us) (2 << ((uint8_t)STM32_IWDG_PR_US(us) + 1)) #define STM32_IWDG_RL_US(us) (uint64_t)(_STM32_IWDG_LSI(us)) / _STM32_IWDG_SCALAR(us) #define STM32_IWDG_RL_MS(s) STM32_IWDG_RL_US(s * 1000.0) #define STM32_IWDG_RL_S(s) STM32_IWDG_RL_US(s * 1000000.0) #if !defined(PLANCK_ENCODER_RESOLUTION) # define PLANCK_ENCODER_RESOLUTION 4 #endif #if !defined(PLANCK_WATCHDOG_TIMEOUT) # define PLANCK_WATCHDOG_TIMEOUT 1.0 #endif #ifdef ENCODER_MAP_ENABLE #error "The encoder map feature is not currently supported by the Planck's encoder matrix" #endif /* matrix state(1:on, 0:off) */ static pin_t matrix_row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static pin_t matrix_col_pins[MATRIX_COLS] = MATRIX_COL_PINS; static matrix_row_t matrix_inverted[MATRIX_COLS]; #ifdef ENCODER_ENABLE int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0}; uint8_t encoder_state[8] = {0}; int8_t encoder_pulses[8] = {0}; uint8_t encoder_value[8] = {0}; #endif void matrix_init_custom(void) { // actual matrix setup - cols for (int i = 0; i < MATRIX_COLS; i++) { setPinOutput(matrix_col_pins[i]); writePinLow(matrix_col_pins[i]); } // rows for (int i = 0; i < MATRIX_ROWS; i++) { setPinInputLow(matrix_row_pins[i]); } // encoder A & B setup setPinInputLow(B12); setPinInputLow(B13); #ifndef PLANCK_WATCHDOG_DISABLE wdgInit(); static WDGConfig wdgcfg; wdgcfg.pr = STM32_IWDG_PR_S(PLANCK_WATCHDOG_TIMEOUT); wdgcfg.rlr = STM32_IWDG_RL_S(PLANCK_WATCHDOG_TIMEOUT); wdgcfg.winr = STM32_IWDG_WIN_DISABLED; wdgStart(&WDGD1, &wdgcfg); #endif } #ifdef ENCODER_ENABLE bool encoder_update(uint8_t index, uint8_t state) { bool changed = false; uint8_t i = index; encoder_pulses[i] += encoder_LUT[state & 0xF]; if (encoder_pulses[i] >= PLANCK_ENCODER_RESOLUTION) { encoder_value[index]++; changed = true; encoder_update_kb(index, false); } if (encoder_pulses[i] <= -PLANCK_ENCODER_RESOLUTION) { encoder_value[index]--; changed = true; encoder_update_kb(index, true); } encoder_pulses[i] %= PLANCK_ENCODER_RESOLUTION; #ifdef ENCODER_DEFAULT_POS encoder_pulses[i] = 0; #endif return changed; } #endif bool matrix_scan_custom(matrix_row_t current_matrix[]) { #ifndef PLANCK_WATCHDOG_DISABLE // reset watchdog wdgReset(&WDGD1); #endif bool changed = false; // actual matrix for (int col = 0; col < MATRIX_COLS; col++) { matrix_row_t data = 0; // strobe col writePinHigh(matrix_col_pins[col]); // need wait to settle pin state wait_us(20); // read row data for (int row = 0; row < MATRIX_ROWS; row++) { data |= (readPin(matrix_row_pins[row]) << row); } // unstrobe col writePinLow(matrix_col_pins[col]); if (matrix_inverted[col] != data) { matrix_inverted[col] = data; } } for (int row = 0; row < MATRIX_ROWS; row++) { matrix_row_t old = current_matrix[row]; current_matrix[row] = 0; for (int col = 0; col < MATRIX_COLS; col++) { current_matrix[row] |= ((matrix_inverted[col] & (1 << row) ? 1 : 0) << col); } changed |= old != current_matrix[row]; } #ifdef ENCODER_ENABLE // encoder-matrix functionality // set up C/rows for encoder read for (int i = 0; i < MATRIX_ROWS; i++) { setPinOutput(matrix_row_pins[i]); writePinHigh(matrix_row_pins[i]); } // set up A & B for reading setPinInputHigh(B12); setPinInputHigh(B13); for (int i = 0; i < MATRIX_ROWS; i++) { writePinLow(matrix_row_pins[i]); wait_us(10); uint8_t new_status = (palReadPad(GPIOB, 12) << 0) | (palReadPad(GPIOB, 13) << 1); if ((encoder_state[i] & 0x3) != new_status) { encoder_state[i] <<= 2; encoder_state[i] |= new_status; encoder_update(i, encoder_state[i]); } writePinHigh(matrix_row_pins[i]); } // revert A & B to matrix state setPinInputLow(B12); setPinInputLow(B13); // revert C/rows to matrix state for (int i = 0; i < MATRIX_ROWS; i++) { setPinInputLow(matrix_row_pins[i]); } #endif return changed; }