// Copyright 2013 Oleg Kostyuk // Copyright 2017 Erin Call // Copyright 2023 @frobiac // SPDX-License-Identifier: GPL-2.0-or-later // This implements a matrix scan (lite) for the BlackBowl keyboard. // Each side has a dedicated MCP23018 I2C expander. #include #include #include #include "wait.h" #include "action_layer.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "blackbowl.h" #include "i2c_master.h" #include "timer.h" #define MATRIX_ROWS_PER_SIDE (MATRIX_ROWS / 2) #define ROW_SHIFTER ((matrix_row_t)1) static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col); static uint8_t expander_reset_loop; uint8_t expander_status; const uint8_t expander_input_mask = ((1 << MATRIX_ROWS_PER_SIDE) - 1); // No special mapping, 5 bits [0..4] per side bool i2c_initialized = false; static const uint8_t I2C_ADDR_RIGHT = 0x4E; static const uint8_t I2C_ADDR_LEFT = 0x46; static const uint8_t i2c_addr[] = {I2C_ADDR_RIGHT, I2C_ADDR_LEFT}; void matrix_init_custom(void) { if (!i2c_initialized) { i2c_init(); wait_ms(1000); } // Pin direction and pull-up depends on diode direction and column register: // ROW2COL, GPIOA => input, output uint8_t direction[2] = {0, expander_input_mask}; uint8_t pullup[2] = {0, expander_input_mask}; for (uint8_t i = 0; i < 2; ++i) { expander_status = i2c_write_register(i2c_addr[i], IODIRA, direction, 2, I2C_TIMEOUT); if (expander_status) return; expander_status = i2c_write_register(i2c_addr[i], GPPUA, pullup, 2, I2C_TIMEOUT); } } bool matrix_scan_custom(matrix_row_t current_matrix[]) { bool matrix_has_changed = false; if (expander_status) { // if there was an error ++expander_reset_loop; if (++expander_reset_loop == 0) { // since expander_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans // this will be approx bit more frequent than once per second matrix_init_custom(); } } for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { matrix_has_changed |= read_rows_on_col(current_matrix, current_col); } return matrix_has_changed; } static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { bool matrix_changed = false; uint8_t port = 0xFF & ~(1 << current_col); uint8_t column_state[] = {0, 0}; // On both expanders: select col and read rows for (size_t i = 0; i < 2; ++i) { if (!expander_status) { expander_status = i2c_write_register(i2c_addr[i], EXPANDER_COL_REGISTER, &port, 1, I2C_TIMEOUT); } wait_us(30); if (expander_status) { return false; } expander_status = i2c_read_register(i2c_addr[i], EXPANDER_ROW_REGISTER, &column_state[i], 1, I2C_TIMEOUT); column_state[i] = (~column_state[i]) & ((1 << MATRIX_ROWS_PER_SIDE) - 1); } // now map rows 0..4 on each side to cumulative to 0..9 uint16_t col_state = column_state[0] | ((column_state[1] << MATRIX_ROWS_PER_SIDE) /*& 0x3e0*/); for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[current_row]; if (col_state & (1 << current_row)) { // key closed; set state bit in matrix current_matrix[current_row] |= (ROW_SHIFTER << current_col); } else { // key open; clear state bit in matrix current_matrix[current_row] &= ~(ROW_SHIFTER << current_col); } // Determine whether the matrix changed state if ((last_row_value != current_matrix[current_row]) && !(matrix_changed)) { matrix_changed = true; } } return matrix_changed; }