// Copyright (c) 2018 Cirque Corp. Restrictions apply. See: www.cirque.com/sw-license // based on https://github.com/cirque-corp/Cirque_Pinnacle_1CA027/tree/master/Circular_Trackpad // with modifications and changes for QMK // refer to documentation: Gen2 and Gen3 (Pinnacle ASIC) at https://www.cirque.com/documentation #include "cirque_pinnacle.h" #include "wait.h" #include "timer.h" #include #ifndef CIRQUE_PINNACLE_ATTENUATION # ifdef CIRQUE_PINNACLE_CURVED_OVERLAY # define CIRQUE_PINNACLE_ATTENUATION EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_2X # else # define CIRQUE_PINNACLE_ATTENUATION EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_4X # endif #endif bool touchpad_init; uint16_t scale_data = CIRQUE_PINNACLE_DEFAULT_SCALE; void cirque_pinnacle_clear_flags(void); void cirque_pinnacle_enable_feed(bool feedEnable); void RAP_ReadBytes(uint8_t address, uint8_t* data, uint8_t count); void RAP_Write(uint8_t address, uint8_t data); #if CIRQUE_PINNACLE_POSITION_MODE /* Logical Scaling Functions */ // Clips raw coordinates to "reachable" window of sensor // NOTE: values outside this window can only appear as a result of noise void ClipCoordinates(pinnacle_data_t* coordinates) { if (coordinates->xValue < CIRQUE_PINNACLE_X_LOWER) { coordinates->xValue = CIRQUE_PINNACLE_X_LOWER; } else if (coordinates->xValue > CIRQUE_PINNACLE_X_UPPER) { coordinates->xValue = CIRQUE_PINNACLE_X_UPPER; } if (coordinates->yValue < CIRQUE_PINNACLE_Y_LOWER) { coordinates->yValue = CIRQUE_PINNACLE_Y_LOWER; } else if (coordinates->yValue > CIRQUE_PINNACLE_Y_UPPER) { coordinates->yValue = CIRQUE_PINNACLE_Y_UPPER; } } #endif uint16_t cirque_pinnacle_get_scale(void) { return scale_data; } void cirque_pinnacle_set_scale(uint16_t scale) { scale_data = scale; } // Scales data to desired X & Y resolution void cirque_pinnacle_scale_data(pinnacle_data_t* coordinates, uint16_t xResolution, uint16_t yResolution) { #if CIRQUE_PINNACLE_POSITION_MODE uint32_t xTemp = 0; uint32_t yTemp = 0; ClipCoordinates(coordinates); xTemp = coordinates->xValue; yTemp = coordinates->yValue; // translate coordinates to (0, 0) reference by subtracting edge-offset xTemp -= CIRQUE_PINNACLE_X_LOWER; yTemp -= CIRQUE_PINNACLE_Y_LOWER; // scale coordinates to (xResolution, yResolution) range coordinates->xValue = (uint16_t)(xTemp * xResolution / CIRQUE_PINNACLE_X_RANGE); coordinates->yValue = (uint16_t)(yTemp * yResolution / CIRQUE_PINNACLE_Y_RANGE); #else int32_t xTemp = 0, yTemp = 0; ldiv_t temp; static int32_t xRemainder, yRemainder; temp = ldiv(((int32_t)coordinates->xDelta) * (int32_t)xResolution + xRemainder, (int32_t)CIRQUE_PINNACLE_X_RANGE); xTemp = temp.quot; xRemainder = temp.rem; temp = ldiv(((int32_t)coordinates->yDelta) * (int32_t)yResolution + yRemainder, (int32_t)CIRQUE_PINNACLE_Y_RANGE); yTemp = temp.quot; yRemainder = temp.rem; coordinates->xDelta = (int16_t)xTemp; coordinates->yDelta = (int16_t)yTemp; #endif } // Clears Status1 register flags (SW_CC and SW_DR) void cirque_pinnacle_clear_flags(void) { RAP_Write(HOSTREG__STATUS1, HOSTREG__STATUS1_DEFVAL & ~(HOSTREG__STATUS1__COMMAND_COMPLETE | HOSTREG__STATUS1__DATA_READY)); wait_us(50); } // Enables/Disables the feed void cirque_pinnacle_enable_feed(bool feedEnable) { uint8_t feedconfig1; RAP_ReadBytes(HOSTREG__FEEDCONFIG1, &feedconfig1, 1); if (feedEnable) { feedconfig1 |= HOSTREG__FEEDCONFIG1__FEED_ENABLE; } else { feedconfig1 &= ~HOSTREG__FEEDCONFIG1__FEED_ENABLE; } RAP_Write(HOSTREG__FEEDCONFIG1, feedconfig1); } /* ERA (Extended Register Access) Functions */ // Reads bytes from an extended register at
(16-bit address), // stores values in <*data> void ERA_ReadBytes(uint16_t address, uint8_t* data, uint16_t count) { uint8_t ERAControlValue = 0xFF; uint16_t timeout_timer; cirque_pinnacle_enable_feed(false); // Disable feed RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_HIGH, (uint8_t)(address >> 8)); // Send upper byte of ERA address RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_LOW, (uint8_t)(address & 0x00FF)); // Send lower byte of ERA address for (uint16_t i = 0; i < count; i++) { RAP_Write(HOSTREG__EXT_REG_AXS_CTRL, HOSTREG__EREG_AXS__INC_ADDR_READ | HOSTREG__EREG_AXS__READ); // Signal ERA-read (auto-increment) to Pinnacle // Wait for status register 0x1E to clear timeout_timer = timer_read(); do { RAP_ReadBytes(HOSTREG__EXT_REG_AXS_CTRL, &ERAControlValue, 1); } while ((ERAControlValue != 0x00) && (timer_elapsed(timeout_timer) <= CIRQUE_PINNACLE_TIMEOUT)); RAP_ReadBytes(HOSTREG__EXT_REG_AXS_VALUE, data + i, 1); cirque_pinnacle_clear_flags(); } } // Writes a byte, , to an extended register at
(16-bit address) void ERA_WriteByte(uint16_t address, uint8_t data) { uint8_t ERAControlValue = 0xFF; uint16_t timeout_timer; cirque_pinnacle_enable_feed(false); // Disable feed RAP_Write(HOSTREG__EXT_REG_AXS_VALUE, data); // Send data byte to be written RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_HIGH, (uint8_t)(address >> 8)); // Upper byte of ERA address RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_LOW, (uint8_t)(address & 0x00FF)); // Lower byte of ERA address RAP_Write(HOSTREG__EXT_REG_AXS_CTRL, HOSTREG__EREG_AXS__WRITE); // Signal an ERA-write to Pinnacle // Wait for status register 0x1E to clear timeout_timer = timer_read(); do { RAP_ReadBytes(HOSTREG__EXT_REG_AXS_CTRL, &ERAControlValue, 1); } while ((ERAControlValue != 0x00) && (timer_elapsed(timeout_timer) <= CIRQUE_PINNACLE_TIMEOUT)); cirque_pinnacle_clear_flags(); } bool cirque_pinnacle_set_adc_attenuation(uint8_t adcGain) { uint8_t adcconfig = 0x00; ERA_ReadBytes(EXTREG__TRACK_ADCCONFIG, &adcconfig, 1); adcGain &= EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK; if (adcGain == (adcconfig & EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK)) { return false; } adcconfig &= ~EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK; adcconfig |= adcGain; ERA_WriteByte(EXTREG__TRACK_ADCCONFIG, adcconfig); ERA_ReadBytes(EXTREG__TRACK_ADCCONFIG, &adcconfig, 1); return true; } // Changes thresholds to improve detection of fingers // Not needed for flat overlay? void cirque_pinnacle_tune_edge_sensitivity(void) { uint8_t widezmin = 0x00; ERA_ReadBytes(EXTREG__XAXIS_WIDEZMIN, &widezmin, 1); ERA_WriteByte(EXTREG__XAXIS_WIDEZMIN, 0x04); // magic number from Cirque sample code ERA_ReadBytes(EXTREG__XAXIS_WIDEZMIN, &widezmin, 1); ERA_ReadBytes(EXTREG__YAXIS_WIDEZMIN, &widezmin, 1); ERA_WriteByte(EXTREG__YAXIS_WIDEZMIN, 0x03); // magic number from Cirque sample code ERA_ReadBytes(EXTREG__YAXIS_WIDEZMIN, &widezmin, 1); } // Perform calibration void cirque_pinnacle_calibrate(void) { uint8_t calconfig; uint16_t timeout_timer; RAP_ReadBytes(HOSTREG__CALCONFIG1, &calconfig, 1); calconfig |= HOSTREG__CALCONFIG1__CALIBRATE; RAP_Write(HOSTREG__CALCONFIG1, calconfig); // Calibration takes ~100ms according to GT-AN-090624, doubling the timeout just to be safe timeout_timer = timer_read(); do { RAP_ReadBytes(HOSTREG__CALCONFIG1, &calconfig, 1); } while ((calconfig & HOSTREG__CALCONFIG1__CALIBRATE) && (timer_elapsed(timeout_timer) <= 200)); cirque_pinnacle_clear_flags(); } // Enable/disable cursor smoothing, smoothing is enabled by default void cirque_pinnacle_cursor_smoothing(bool enable) { uint8_t feedconfig3; RAP_ReadBytes(HOSTREG__FEEDCONFIG3, &feedconfig3, 1); if (enable) { feedconfig3 &= ~HOSTREG__FEEDCONFIG3__DISABLE_CROSS_RATE_SMOOTHING; } else { feedconfig3 |= HOSTREG__FEEDCONFIG3__DISABLE_CROSS_RATE_SMOOTHING; } RAP_Write(HOSTREG__FEEDCONFIG3, feedconfig3); } // Check sensor is connected bool cirque_pinnacle_connected(void) { uint8_t current_zidle = 0; uint8_t temp_zidle = 0; RAP_ReadBytes(HOSTREG__ZIDLE, ¤t_zidle, 1); RAP_Write(HOSTREG__ZIDLE, HOSTREG__ZIDLE_DEFVAL); RAP_ReadBytes(HOSTREG__ZIDLE, &temp_zidle, 1); if (temp_zidle == HOSTREG__ZIDLE_DEFVAL) { RAP_Write(HOSTREG__ZIDLE, current_zidle); return true; } return false; } /* Pinnacle-based TM040040/TM035035/TM023023 Functions */ void cirque_pinnacle_init(void) { #if defined(POINTING_DEVICE_DRIVER_cirque_pinnacle_spi) spi_init(); #elif defined(POINTING_DEVICE_DRIVER_cirque_pinnacle_i2c) i2c_init(); #endif touchpad_init = true; // send a RESET command now, in case QMK had a soft-reset without a power cycle RAP_Write(HOSTREG__SYSCONFIG1, HOSTREG__SYSCONFIG1__RESET); wait_ms(30); // Pinnacle needs 10-15ms to boot, so wait long enough before configuring RAP_Write(HOSTREG__SYSCONFIG1, HOSTREG__SYSCONFIG1_DEFVAL); wait_us(50); // Host clears SW_CC flag cirque_pinnacle_clear_flags(); #if CIRQUE_PINNACLE_POSITION_MODE RAP_Write(HOSTREG__FEEDCONFIG2, HOSTREG__FEEDCONFIG2_DEFVAL); #else // FeedConfig2 (Feature flags for Relative Mode Only) uint8_t feedconfig2 = HOSTREG__FEEDCONFIG2__GLIDE_EXTEND_DISABLE | HOSTREG__FEEDCONFIG2__INTELLIMOUSE_MODE; # if !defined(CIRQUE_PINNACLE_TAP_ENABLE) feedconfig2 |= HOSTREG__FEEDCONFIG2__ALL_TAP_DISABLE; # endif # if !defined(CIRQUE_PINNACLE_SECONDARY_TAP_ENABLE) feedconfig2 |= HOSTREG__FEEDCONFIG2__SECONDARY_TAP_DISABLE; # elif !defined(CIRQUE_PINNACLE_TAP_ENABLE) # error CIRQUE_PINNACLE_TAP_ENABLE must be defined for CIRQUE_PINNACLE_SECONDARY_TAP_ENABLE to work # endif # if !defined(CIRQUE_PINNACLE_SIDE_SCROLL_ENABLE) feedconfig2 |= HOSTREG__FEEDCONFIG2__SCROLL_DISABLE; # endif RAP_Write(HOSTREG__FEEDCONFIG2, feedconfig2); #endif // FeedConfig1 (Data Output Flags) RAP_Write(HOSTREG__FEEDCONFIG1, CIRQUE_PINNACLE_POSITION_MODE ? HOSTREG__FEEDCONFIG1__DATA_TYPE__REL0_ABS1 : HOSTREG__FEEDCONFIG1_DEFVAL); #if CIRQUE_PINNACLE_POSITION_MODE // Host sets z-idle packet count to 5 (default is 0x1E/30) RAP_Write(HOSTREG__ZIDLE, 5); #endif bool calibrate = cirque_pinnacle_set_adc_attenuation(CIRQUE_PINNACLE_ATTENUATION); #ifdef CIRQUE_PINNACLE_CURVED_OVERLAY cirque_pinnacle_tune_edge_sensitivity(); calibrate = true; #endif if (calibrate) { // Force a calibration after setting ADC attenuation cirque_pinnacle_calibrate(); } cirque_pinnacle_enable_feed(true); #ifndef CIRQUE_PINNACLE_SKIP_SENSOR_CHECK touchpad_init = cirque_pinnacle_connected(); #endif } pinnacle_data_t cirque_pinnacle_read_data(void) { uint8_t data_ready = 0; uint8_t data[6] = {0}; pinnacle_data_t result = {0}; // Check if there is valid data available RAP_ReadBytes(HOSTREG__STATUS1, &data_ready, 1); if ((data_ready & HOSTREG__STATUS1__DATA_READY) == 0) { // no data available yet result.valid = false; // be explicit return result; } // Read all data bytes RAP_ReadBytes(HOSTREG__PACKETBYTE_0, data, 6); // Get ready for the next data sample cirque_pinnacle_clear_flags(); #if CIRQUE_PINNACLE_POSITION_MODE // Decode data for absolute mode // Register 0x13 is unused in this mode (palm detection area) result.buttonFlags = data[0] & 0x3F; // bit0 to bit5 are switch 0-5, only hardware button presses (from input pin on the Pinnacle chip) result.xValue = data[2] | ((data[4] & 0x0F) << 8); // merge high and low bits for X result.yValue = data[3] | ((data[4] & 0xF0) << 4); // merge high and low bits for Y result.zValue = data[5] & 0x3F; // Z is only lower 6 bits, upper 2 bits are reserved/unused result.touchDown = (result.xValue != 0 || result.yValue != 0); // (0,0) is a "magic coordinate" to indicate "finger touched down" #else // Decode data for relative mode // Registers 0x16 and 0x17 are unused in this mode result.buttons = data[0] & 0x07; // Only three buttons are supported if ((data[0] & 0x10) && data[1] != 0) { result.xDelta = -((int16_t)256 - (int16_t)(data[1])); } else { result.xDelta = data[1]; } if ((data[0] & 0x20) && data[2] != 0) { result.yDelta = ((int16_t)256 - (int16_t)(data[2])); } else { result.yDelta = -((int16_t)data[2]); } result.wheelCount = ((int8_t*)data)[3]; #endif #ifdef CIRQUE_PINNACLE_REACHABLE_CALIBRATION static uint16_t xMin = UINT16_MAX, yMin = UINT16_MAX, yMax = 0, xMax = 0; if (result.xValue < xMin) xMin = result.xValue; if (result.xValue > xMax) xMax = result.xValue; if (result.yValue < yMin) yMin = result.yValue; if (result.yValue > yMax) yMax = result.yValue; pd_dprintf("%s: xLo=%3d xHi=%3d yLo=%3d yHi=%3d\n", __FUNCTION__, xMin, xMax, yMin, yMax); #endif result.valid = true; return result; }