/* Copyright 2017 Jason Williams
* Copyright 2018 Jack Humbert
* Copyright 2018 Yiancar
* Copyright 2021 Doni Crosby
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "is31fl3733.h"
#include
#include "i2c_master.h"
#include "wait.h"
#define IS31FL3733_COMMANDREGISTER 0xFD
#define IS31FL3733_COMMANDREGISTER_WRITELOCK 0xFE
#define IS31FL3733_INTERRUPTMASKREGISTER 0xF0
#define IS31FL3733_INTERRUPTSTATUSREGISTER 0xF1
#define IS31FL3733_PAGE_LEDCONTROL 0x00 // PG0
#define IS31FL3733_PAGE_PWM 0x01 // PG1
#define IS31FL3733_PAGE_AUTOBREATH 0x02 // PG2
#define IS31FL3733_PAGE_FUNCTION 0x03 // PG3
#define IS31FL3733_REG_CONFIGURATION 0x00 // PG3
#define IS31FL3733_REG_GLOBALCURRENT 0x01 // PG3
#define IS31FL3733_REG_RESET 0x11 // PG3
#define IS31FL3733_REG_SWPULLUP 0x0F // PG3
#define IS31FL3733_REG_CSPULLUP 0x10 // PG3
#ifndef IS31FL3733_I2C_TIMEOUT
# define IS31FL3733_I2C_TIMEOUT 100
#endif
#ifndef IS31FL3733_I2C_PERSISTENCE
# define IS31FL3733_I2C_PERSISTENCE 0
#endif
#ifndef IS31FL3733_PWM_FREQUENCY
# define IS31FL3733_PWM_FREQUENCY IS31FL3733_PWM_FREQUENCY_8K4_HZ // PFS - IS31FL3733B only
#endif
#ifndef IS31FL3733_SWPULLUP
# define IS31FL3733_SWPULLUP IS31FL3733_PUR_0R
#endif
#ifndef IS31FL3733_CSPULLUP
# define IS31FL3733_CSPULLUP IS31FL3733_PUR_0R
#endif
#ifndef IS31FL3733_GLOBALCURRENT
# define IS31FL3733_GLOBALCURRENT 0xFF
#endif
// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[20];
// These buffers match the IS31FL3733 PWM registers.
// The control buffers match the PG0 LED On/Off registers.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in is31fl3733_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[IS31FL3733_DRIVER_COUNT][192];
bool g_pwm_buffer_update_required[IS31FL3733_DRIVER_COUNT] = {false};
uint8_t g_led_control_registers[IS31FL3733_DRIVER_COUNT][24] = {0};
bool g_led_control_registers_update_required[IS31FL3733_DRIVER_COUNT] = {false};
bool is31fl3733_write_register(uint8_t addr, uint8_t reg, uint8_t data) {
// If the transaction fails function returns false.
g_twi_transfer_buffer[0] = reg;
g_twi_transfer_buffer[1] = data;
#if IS31FL3733_I2C_PERSISTENCE > 0
for (uint8_t i = 0; i < IS31FL3733_I2C_PERSISTENCE; i++) {
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, IS31FL3733_I2C_TIMEOUT) != 0) {
return false;
}
}
#else
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, IS31FL3733_I2C_TIMEOUT) != 0) {
return false;
}
#endif
return true;
}
bool is31fl3733_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) {
// Assumes PG1 is already selected.
// If any of the transactions fails function returns false.
// Transmit PWM registers in 12 transfers of 16 bytes.
// g_twi_transfer_buffer[] is 20 bytes
// Iterate over the pwm_buffer contents at 16 byte intervals.
for (int i = 0; i < 192; i += 16) {
g_twi_transfer_buffer[0] = i;
// Copy the data from i to i+15.
// Device will auto-increment register for data after the first byte
// Thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer.
memcpy(g_twi_transfer_buffer + 1, pwm_buffer + i, 16);
#if IS31FL3733_I2C_PERSISTENCE > 0
for (uint8_t i = 0; i < IS31FL3733_I2C_PERSISTENCE; i++) {
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, IS31FL3733_I2C_TIMEOUT) != 0) {
return false;
}
}
#else
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, IS31FL3733_I2C_TIMEOUT) != 0) {
return false;
}
#endif
}
return true;
}
void is31fl3733_init(uint8_t addr, uint8_t sync) {
// In order to avoid the LEDs being driven with garbage data
// in the LED driver's PWM registers, shutdown is enabled last.
// Set up the mode and other settings, clear the PWM registers,
// then disable software shutdown.
// Sync is passed so set it according to the datasheet.
// Unlock the command register.
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER_WRITELOCK, 0xC5);
// Select PG0
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER, IS31FL3733_PAGE_LEDCONTROL);
// Turn off all LEDs.
for (int i = 0x00; i <= 0x17; i++) {
is31fl3733_write_register(addr, i, 0x00);
}
// Unlock the command register.
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER_WRITELOCK, 0xC5);
// Select PG1
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER, IS31FL3733_PAGE_PWM);
// Set PWM on all LEDs to 0
// No need to setup Breath registers to PWM as that is the default.
for (int i = 0x00; i <= 0xBF; i++) {
is31fl3733_write_register(addr, i, 0x00);
}
// Unlock the command register.
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER_WRITELOCK, 0xC5);
// Select PG3
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER, IS31FL3733_PAGE_FUNCTION);
// Set de-ghost pull-up resistors (SWx)
is31fl3733_write_register(addr, IS31FL3733_REG_SWPULLUP, IS31FL3733_SWPULLUP);
// Set de-ghost pull-down resistors (CSx)
is31fl3733_write_register(addr, IS31FL3733_REG_CSPULLUP, IS31FL3733_CSPULLUP);
// Set global current to maximum.
is31fl3733_write_register(addr, IS31FL3733_REG_GLOBALCURRENT, IS31FL3733_GLOBALCURRENT);
// Disable software shutdown.
is31fl3733_write_register(addr, IS31FL3733_REG_CONFIGURATION, ((sync & 0b11) << 6) | ((IS31FL3733_PWM_FREQUENCY & 0b111) << 3) | 0x01);
// Wait 10ms to ensure the device has woken up.
wait_ms(10);
}
void is31fl3733_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) {
is31fl3733_led_t led;
if (index >= 0 && index < RGB_MATRIX_LED_COUNT) {
memcpy_P(&led, (&g_is31fl3733_leds[index]), sizeof(led));
if (g_pwm_buffer[led.driver][led.r] == red && g_pwm_buffer[led.driver][led.g] == green && g_pwm_buffer[led.driver][led.b] == blue) {
return;
}
g_pwm_buffer[led.driver][led.r] = red;
g_pwm_buffer[led.driver][led.g] = green;
g_pwm_buffer[led.driver][led.b] = blue;
g_pwm_buffer_update_required[led.driver] = true;
}
}
void is31fl3733_set_color_all(uint8_t red, uint8_t green, uint8_t blue) {
for (int i = 0; i < RGB_MATRIX_LED_COUNT; i++) {
is31fl3733_set_color(i, red, green, blue);
}
}
void is31fl3733_set_led_control_register(uint8_t index, bool red, bool green, bool blue) {
is31fl3733_led_t led;
memcpy_P(&led, (&g_is31fl3733_leds[index]), sizeof(led));
uint8_t control_register_r = led.r / 8;
uint8_t control_register_g = led.g / 8;
uint8_t control_register_b = led.b / 8;
uint8_t bit_r = led.r % 8;
uint8_t bit_g = led.g % 8;
uint8_t bit_b = led.b % 8;
if (red) {
g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
} else {
g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
}
if (green) {
g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
} else {
g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
}
if (blue) {
g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
} else {
g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
}
g_led_control_registers_update_required[led.driver] = true;
}
void is31fl3733_update_pwm_buffers(uint8_t addr, uint8_t index) {
if (g_pwm_buffer_update_required[index]) {
// Firstly we need to unlock the command register and select PG1.
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER_WRITELOCK, 0xC5);
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER, IS31FL3733_PAGE_PWM);
// If any of the transactions fail we risk writing dirty PG0,
// refresh page 0 just in case.
if (!is31fl3733_write_pwm_buffer(addr, g_pwm_buffer[index])) {
g_led_control_registers_update_required[index] = true;
}
g_pwm_buffer_update_required[index] = false;
}
}
void is31fl3733_update_led_control_registers(uint8_t addr, uint8_t index) {
if (g_led_control_registers_update_required[index]) {
// Firstly we need to unlock the command register and select PG0
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER_WRITELOCK, 0xC5);
is31fl3733_write_register(addr, IS31FL3733_COMMANDREGISTER, IS31FL3733_PAGE_LEDCONTROL);
for (int i = 0; i < 24; i++) {
is31fl3733_write_register(addr, i, g_led_control_registers[index][i]);
}
g_led_control_registers_update_required[index] = false;
}
}
void is31fl3733_flush(void) {
is31fl3733_update_pwm_buffers(IS31FL3733_I2C_ADDRESS_1, 0);
#if defined(IS31FL3733_I2C_ADDRESS_2)
is31fl3733_update_pwm_buffers(IS31FL3733_I2C_ADDRESS_2, 1);
# if defined(IS31FL3733_I2C_ADDRESS_3)
is31fl3733_update_pwm_buffers(IS31FL3733_I2C_ADDRESS_3, 2);
# if defined(IS31FL3733_I2C_ADDRESS_4)
is31fl3733_update_pwm_buffers(IS31FL3733_I2C_ADDRESS_4, 3);
# endif
# endif
#endif
}