summaryrefslogtreecommitdiff
path: root/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/TransformFunctions/arm_rfft_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/TransformFunctions/arm_rfft_q15.c')
-rw-r--r--tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/TransformFunctions/arm_rfft_q15.c482
1 files changed, 482 insertions, 0 deletions
diff --git a/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/TransformFunctions/arm_rfft_q15.c b/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/TransformFunctions/arm_rfft_q15.c
new file mode 100644
index 0000000000..0b6613cde9
--- /dev/null
+++ b/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/TransformFunctions/arm_rfft_q15.c
@@ -0,0 +1,482 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
+*
+* $Date: 17. January 2013
+* $Revision: V1.4.1
+*
+* Project: CMSIS DSP Library
+* Title: arm_rfft_q15.c
+*
+* Description: RFFT & RIFFT Q15 process function
+*
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+void arm_radix4_butterfly_q15(
+ q15_t * pSrc16,
+ uint32_t fftLen,
+ q15_t * pCoef16,
+ uint32_t twidCoefModifier);
+
+void arm_radix4_butterfly_inverse_q15(
+ q15_t * pSrc16,
+ uint32_t fftLen,
+ q15_t * pCoef16,
+ uint32_t twidCoefModifier);
+
+void arm_bitreversal_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ uint16_t bitRevFactor,
+ uint16_t * pBitRevTab);
+
+ /*--------------------------------------------------------------------
+* Internal functions prototypes
+--------------------------------------------------------------------*/
+
+void arm_split_rfft_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ q15_t * pATable,
+ q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier);
+
+void arm_split_rifft_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ q15_t * pATable,
+ q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier);
+
+/**
+ * @addtogroup RealFFT
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 RFFT/RIFFT.
+ * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
+ * @param[in] *pSrc points to the input buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @return none.
+ *
+ * \par Input an output formats:
+ * \par
+ * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
+ * Hence the output format is different for different RFFT sizes.
+ * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
+ * \par
+ * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
+ * \par
+ * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
+ */
+
+void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst)
+{
+ const arm_cfft_radix4_instance_q15 *S_CFFT = S->pCfft;
+
+ /* Calculation of RIFFT of input */
+ if(S->ifftFlagR == 1u)
+ {
+ /* Real IFFT core process */
+ arm_split_rifft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal,
+ S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+
+ /* Complex readix-4 IFFT process */
+ arm_radix4_butterfly_inverse_q15(pDst, S_CFFT->fftLen,
+ S_CFFT->pTwiddle,
+ S_CFFT->twidCoefModifier);
+
+ /* Bit reversal process */
+ if(S->bitReverseFlagR == 1u)
+ {
+ arm_bitreversal_q15(pDst, S_CFFT->fftLen,
+ S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
+ }
+ }
+ else
+ {
+ /* Calculation of RFFT of input */
+
+ /* Complex readix-4 FFT process */
+ arm_radix4_butterfly_q15(pSrc, S_CFFT->fftLen,
+ S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
+
+ /* Bit reversal process */
+ if(S->bitReverseFlagR == 1u)
+ {
+ arm_bitreversal_q15(pSrc, S_CFFT->fftLen,
+ S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
+ }
+
+ arm_split_rfft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal,
+ S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+ }
+
+}
+
+ /**
+ * @} end of RealFFT group
+ */
+
+/**
+ * @brief Core Real FFT process
+ * @param *pSrc points to the input buffer.
+ * @param fftLen length of FFT.
+ * @param *pATable points to the A twiddle Coef buffer.
+ * @param *pBTable points to the B twiddle Coef buffer.
+ * @param *pDst points to the output buffer.
+ * @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ * The function implements a Real FFT
+ */
+
+void arm_split_rfft_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ q15_t * pATable,
+ q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier)
+{
+ uint32_t i; /* Loop Counter */
+ q31_t outR, outI; /* Temporary variables for output */
+ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
+ q15_t *pSrc1, *pSrc2;
+
+
+// pSrc[2u * fftLen] = pSrc[0];
+// pSrc[(2u * fftLen) + 1u] = pSrc[1];
+
+ pCoefA = &pATable[modifier * 2u];
+ pCoefB = &pBTable[modifier * 2u];
+
+ pSrc1 = &pSrc[2];
+ pSrc2 = &pSrc[(2u * fftLen) - 2u];
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ i = 1u;
+
+ while(i < fftLen)
+ {
+ /*
+ outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
+ + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
+ pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+ */
+
+ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
+ pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
+
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
+ outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
+
+#else
+
+ /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
+ outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
+ pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+ outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 15u;
+
+ /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
+
+#else
+
+ outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
+ outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
+
+ /* write output */
+ pDst[2u * i] = (q15_t) outR;
+ pDst[(2u * i) + 1u] = outI >> 15u;
+
+ /* write complex conjugate output */
+ pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
+ pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u);
+
+ /* update coefficient pointer */
+ pCoefB = pCoefB + (2u * modifier);
+ pCoefA = pCoefA + (2u * modifier);
+
+ i++;
+
+ }
+
+ pDst[2u * fftLen] = pSrc[0] - pSrc[1];
+ pDst[(2u * fftLen) + 1u] = 0;
+
+ pDst[0] = pSrc[0] + pSrc[1];
+ pDst[1] = 0;
+
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ i = 1u;
+
+ while(i < fftLen)
+ {
+ /*
+ outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
+ + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
+ pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+ */
+
+ outR = *pSrc1 * *pCoefA;
+ outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
+ outR = outR + (*pSrc2 * *pCoefB);
+ outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 15;
+
+
+ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
+ pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+ */
+
+ outI = *pSrc2 * *(pCoefB + 1);
+ outI = outI - (*(pSrc2 + 1) * *pCoefB);
+ outI = outI + (*(pSrc1 + 1) * *pCoefA);
+ outI = outI + (*pSrc1 * *(pCoefA + 1));
+
+ /* update input pointers */
+ pSrc1 += 2u;
+ pSrc2 -= 2u;
+
+ /* write output */
+ pDst[2u * i] = (q15_t) outR;
+ pDst[(2u * i) + 1u] = outI >> 15u;
+
+ /* write complex conjugate output */
+ pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
+ pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u);
+
+ /* update coefficient pointer */
+ pCoefB = pCoefB + (2u * modifier);
+ pCoefA = pCoefA + (2u * modifier);
+
+ i++;
+
+ }
+
+ pDst[2u * fftLen] = pSrc[0] - pSrc[1];
+ pDst[(2u * fftLen) + 1u] = 0;
+
+ pDst[0] = pSrc[0] + pSrc[1];
+ pDst[1] = 0;
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+}
+
+
+/**
+ * @brief Core Real IFFT process
+ * @param[in] *pSrc points to the input buffer.
+ * @param[in] fftLen length of FFT.
+ * @param[in] *pATable points to the twiddle Coef A buffer.
+ * @param[in] *pBTable points to the twiddle Coef B buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ * The function implements a Real IFFT
+ */
+void arm_split_rifft_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ q15_t * pATable,
+ q15_t * pBTable,
+ q15_t * pDst,
+ uint32_t modifier)
+{
+ uint32_t i; /* Loop Counter */
+ q31_t outR, outI; /* Temporary variables for output */
+ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
+ q15_t *pSrc1, *pSrc2;
+ q15_t *pDst1 = &pDst[0];
+
+ pCoefA = &pATable[0];
+ pCoefB = &pBTable[0];
+
+ pSrc1 = &pSrc[0];
+ pSrc2 = &pSrc[2u * fftLen];
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ i = fftLen;
+
+ while(i > 0u)
+ {
+
+ /*
+ outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
+ pIn[2 * n - 2 * i] * pBTable[2 * i] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+
+ outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
+ pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+
+ */
+
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ /* pIn[2 * n - 2 * i] * pBTable[2 * i] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+ outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
+
+#else
+
+ /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
+ outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
+ pIn[2 * n - 2 * i] * pBTable[2 * i] */
+ outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 15u;
+
+ /*
+ -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+ outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
+
+ /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
+
+#else
+
+ outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ /* write output */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 15u), 16);
+
+#else
+
+ *__SIMD32(pDst1)++ = __PKHBT((outI >> 15u), outR, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* update coefficient pointer */
+ pCoefB = pCoefB + (2u * modifier);
+ pCoefA = pCoefA + (2u * modifier);
+
+ i--;
+
+ }
+
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ i = fftLen;
+
+ while(i > 0u)
+ {
+
+ /*
+ outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
+ pIn[2 * n - 2 * i] * pBTable[2 * i] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+ */
+
+ outR = *pSrc2 * *pCoefB;
+ outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
+ outR = outR + (*pSrc1 * *pCoefA);
+ outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 15;
+
+ /*
+ outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
+ pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+ pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+ */
+
+ outI = *(pSrc1 + 1) * *pCoefA;
+ outI = outI - (*pSrc1 * *(pCoefA + 1));
+ outI = outI - (*pSrc2 * *(pCoefB + 1));
+ outI = outI - (*(pSrc2 + 1) * *(pCoefB));
+
+ /* update input pointers */
+ pSrc1 += 2u;
+ pSrc2 -= 2u;
+
+ /* write output */
+ *pDst1++ = (q15_t) outR;
+ *pDst1++ = (q15_t) (outI >> 15);
+
+ /* update coefficient pointer */
+ pCoefB = pCoefB + (2u * modifier);
+ pCoefA = pCoefA + (2u * modifier);
+
+ i--;
+
+ }
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+}