summaryrefslogtreecommitdiff
path: root/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_biquad_cascade_df1_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_biquad_cascade_df1_q31.c')
-rw-r--r--tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_biquad_cascade_df1_q31.c402
1 files changed, 402 insertions, 0 deletions
diff --git a/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_biquad_cascade_df1_q31.c b/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_biquad_cascade_df1_q31.c
new file mode 100644
index 0000000000..174398b9d2
--- /dev/null
+++ b/tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_biquad_cascade_df1_q31.c
@@ -0,0 +1,402 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
+*
+* $Date: 17. January 2013
+* $Revision: V1.4.1
+*
+* Project: CMSIS DSP Library
+* Title: arm_biquad_cascade_df1_q31.c
+*
+* Description: Processing function for the
+* Q31 Biquad cascade filter
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 Biquad cascade filter.
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
+ * After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
+ * 1.31 format by discarding the low 32 bits.
+ *
+ * \par
+ * Refer to the function <code>arm_biquad_cascade_df1_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
+ */
+
+void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q63_t acc; /* accumulator */
+ uint32_t uShift = ((uint32_t) S->postShift + 1u);
+ uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */
+ q31_t *pIn = pSrc; /* input pointer initialization */
+ q31_t *pOut = pDst; /* output pointer initialization */
+ q31_t *pState = S->pState; /* pState pointer initialization */
+ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
+ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t Xn; /* temporary input */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+ q31_t acc_l, acc_h; /* temporary output variables */
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ /* The variable acc hold output values that are being computed:
+ *
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize >> 2u;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while(sample > 0u)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 , Yn2 variable is reused */
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn2;
+
+ /* Read the second input */
+ Xn2 = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn2;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn1;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn2;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn1;
+
+
+ /* The result is converted to 1.31, Yn1 variable is reused */
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn1;
+
+ /* Read the third input */
+ Xn1 = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn1;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn2;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31, Yn2 variable is reused */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn2;
+
+ /* Read the forth input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn2;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn1;
+
+ /* The result is converted to 1.31, Yn1 variable is reused */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn1;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ sample = (blockSize & 0x3u);
+
+ while(sample > 0u)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 */
+ acc = acc >> lShift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q31_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while(--stage);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* The variables acc holds the output value that is computed:
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize;
+
+ while(sample > 0u)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 */
+ acc = acc >> lShift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q31_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while(--stage);
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+}
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */