summaryrefslogtreecommitdiff
path: root/tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_LPC11U.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_LPC11U.cpp')
-rw-r--r--tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_LPC11U.cpp738
1 files changed, 738 insertions, 0 deletions
diff --git a/tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_LPC11U.cpp b/tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_LPC11U.cpp
new file mode 100644
index 0000000000..1a5fa8c0f8
--- /dev/null
+++ b/tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_LPC11U.cpp
@@ -0,0 +1,738 @@
+/* Copyright (c) 2010-2011 mbed.org, MIT License
+*
+* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
+* and associated documentation files (the "Software"), to deal in the Software without
+* restriction, including without limitation the rights to use, copy, modify, merge, publish,
+* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
+* Software is furnished to do so, subject to the following conditions:
+*
+* The above copyright notice and this permission notice shall be included in all copies or
+* substantial portions of the Software.
+*
+* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
+* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*/
+
+#if defined(TARGET_LPC11UXX) || defined(TARGET_LPC11U6X) || defined(TARGET_LPC1347) || defined(TARGET_LPC1549)
+
+#if defined(TARGET_LPC1347) || defined(TARGET_LPC1549)
+#define USB_IRQ USB_IRQ_IRQn
+#else
+#define USB_IRQ USB_IRQn
+#endif
+
+#include "USBHAL.h"
+
+USBHAL * USBHAL::instance;
+#if defined(TARGET_LPC1549)
+static uint8_t usbmem[2048] __attribute__((aligned(2048)));
+#endif
+
+// Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
+#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
+
+// Convert physical endpoint number to register bit
+#define EP(endpoint) (1UL<<endpoint)
+
+// Convert physical to logical
+#define PHY_TO_LOG(endpoint) ((endpoint)>>1)
+
+// Get endpoint direction
+#define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
+#define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
+
+// USB RAM
+#if defined(TARGET_LPC1549)
+#define USB_RAM_START ((uint32_t)usbmem)
+#define USB_RAM_SIZE sizeof(usbmem)
+#else
+#define USB_RAM_START (0x20004000)
+#define USB_RAM_SIZE (0x00000800)
+#endif
+
+// SYSAHBCLKCTRL
+#if defined(TARGET_LPC1549)
+#define CLK_USB (1UL<<23)
+#else
+#define CLK_USB (1UL<<14)
+#define CLK_USBRAM (1UL<<27)
+#endif
+
+// USB Information register
+#define FRAME_NR(a) ((a) & 0x7ff) // Frame number
+
+// USB Device Command/Status register
+#define DEV_ADDR_MASK (0x7f) // Device address
+#define DEV_ADDR(a) ((a) & DEV_ADDR_MASK)
+#define DEV_EN (1UL<<7) // Device enable
+#define SETUP (1UL<<8) // SETUP token received
+#define PLL_ON (1UL<<9) // PLL enabled in suspend
+#define DCON (1UL<<16) // Device status - connect
+#define DSUS (1UL<<17) // Device status - suspend
+#define DCON_C (1UL<<24) // Connect change
+#define DSUS_C (1UL<<25) // Suspend change
+#define DRES_C (1UL<<26) // Reset change
+#define VBUSDEBOUNCED (1UL<<28) // Vbus detected
+
+// Endpoint Command/Status list
+#define CMDSTS_A (1UL<<31) // Active
+#define CMDSTS_D (1UL<<30) // Disable
+#define CMDSTS_S (1UL<<29) // Stall
+#define CMDSTS_TR (1UL<<28) // Toggle Reset
+#define CMDSTS_RF (1UL<<27) // Rate Feedback mode
+#define CMDSTS_TV (1UL<<27) // Toggle Value
+#define CMDSTS_T (1UL<<26) // Endpoint Type
+#define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes
+#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address
+
+#define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer
+
+// USB Non-endpoint interrupt sources
+#define FRAME_INT (1UL<<30)
+#define DEV_INT (1UL<<31)
+
+static volatile int epComplete = 0;
+
+// One entry for a double-buffered logical endpoint in the endpoint
+// command/status list. Endpoint 0 is single buffered, out[1] is used
+// for the SETUP packet and in[1] is not used
+typedef struct {
+ uint32_t out[2];
+ uint32_t in[2];
+} PACKED EP_COMMAND_STATUS;
+
+typedef struct {
+ uint8_t out[MAX_PACKET_SIZE_EP0];
+ uint8_t in[MAX_PACKET_SIZE_EP0];
+ uint8_t setup[SETUP_PACKET_SIZE];
+} PACKED CONTROL_TRANSFER;
+
+typedef struct {
+ uint32_t maxPacket;
+ uint32_t buffer[2];
+ uint32_t options;
+} PACKED EP_STATE;
+
+static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
+
+// Pointer to the endpoint command/status list
+static EP_COMMAND_STATUS *ep = NULL;
+
+// Pointer to endpoint 0 data (IN/OUT and SETUP)
+static CONTROL_TRANSFER *ct = NULL;
+
+// Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
+// initiating a remote wakeup event.
+static volatile uint32_t devCmdStat;
+
+// Pointers used to allocate USB RAM
+static uint32_t usbRamPtr = USB_RAM_START;
+static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
+
+#define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
+
+void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
+void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
+ if (size > 0) {
+ do {
+ *dst++ = *src++;
+ } while (--size > 0);
+ }
+}
+
+
+USBHAL::USBHAL(void) {
+ NVIC_DisableIRQ(USB_IRQ);
+
+ // fill in callback array
+ epCallback[0] = &USBHAL::EP1_OUT_callback;
+ epCallback[1] = &USBHAL::EP1_IN_callback;
+ epCallback[2] = &USBHAL::EP2_OUT_callback;
+ epCallback[3] = &USBHAL::EP2_IN_callback;
+ epCallback[4] = &USBHAL::EP3_OUT_callback;
+ epCallback[5] = &USBHAL::EP3_IN_callback;
+ epCallback[6] = &USBHAL::EP4_OUT_callback;
+ epCallback[7] = &USBHAL::EP4_IN_callback;
+
+#if defined(TARGET_LPC1549)
+ /* Set USB PLL input to system oscillator */
+ LPC_SYSCON->USBPLLCLKSEL = 0x01;
+
+ /* Setup USB PLL (FCLKIN = 12MHz) * 4 = 48MHz
+ MSEL = 3 (this is pre-decremented), PSEL = 1 (for P = 2)
+ FCLKOUT = FCLKIN * (MSEL + 1) = 12MHz * 4 = 48MHz
+ FCCO = FCLKOUT * 2 * P = 48MHz * 2 * 2 = 192MHz (within FCCO range) */
+ LPC_SYSCON->USBPLLCTRL = (0x3 | (1UL << 6));
+
+ /* Powerup USB PLL */
+ LPC_SYSCON->PDRUNCFG &= ~(CLK_USB);
+
+ /* Wait for PLL to lock */
+ while(!(LPC_SYSCON->USBPLLSTAT & 0x01));
+
+ /* enable USB main clock */
+ LPC_SYSCON->USBCLKSEL = 0x02;
+ LPC_SYSCON->USBCLKDIV = 1;
+
+ /* Enable AHB clock to the USB block. */
+ LPC_SYSCON->SYSAHBCLKCTRL1 |= CLK_USB;
+
+ /* power UP USB Phy */
+ LPC_SYSCON->PDRUNCFG &= ~(1UL << 9);
+
+ /* Reset USB block */
+ LPC_SYSCON->PRESETCTRL1 |= (CLK_USB);
+ LPC_SYSCON->PRESETCTRL1 &= ~(CLK_USB);
+
+#else
+ #if defined(TARGET_LPC11U35_401) || defined(TARGET_LPC11U35_501)
+ // USB_VBUS input with pull-down
+ LPC_IOCON->PIO0_3 = 0x00000009;
+ #endif
+
+ // nUSB_CONNECT output
+ LPC_IOCON->PIO0_6 = 0x00000001;
+
+ // Enable clocks (USB registers, USB RAM)
+ LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
+
+ // Ensure device disconnected (DCON not set)
+ LPC_USB->DEVCMDSTAT = 0;
+#endif
+ // to ensure that the USB host sees the device as
+ // disconnected if the target CPU is reset.
+ wait(0.3);
+
+ // Reserve space in USB RAM for endpoint command/status list
+ // Must be 256 byte aligned
+ usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
+ ep = (EP_COMMAND_STATUS *)usbRamPtr;
+ usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
+ LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
+
+ // Reserve space in USB RAM for Endpoint 0
+ // Must be 64 byte aligned
+ usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
+ ct = (CONTROL_TRANSFER *)usbRamPtr;
+ usbRamPtr += sizeof(CONTROL_TRANSFER);
+ LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
+
+ // Setup command/status list for EP0
+ ep[0].out[0] = 0;
+ ep[0].in[0] = 0;
+ ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
+
+ // Route all interrupts to IRQ, some can be routed to
+ // USB_FIQ if you wish.
+ LPC_USB->INTROUTING = 0;
+
+ // Set device address 0, enable USB device, no remote wakeup
+ devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
+ LPC_USB->DEVCMDSTAT = devCmdStat;
+
+ // Enable interrupts for device events and EP0
+ LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
+ instance = this;
+
+ //attach IRQ handler and enable interrupts
+ NVIC_SetVector(USB_IRQ, (uint32_t)&_usbisr);
+}
+
+USBHAL::~USBHAL(void) {
+ // Ensure device disconnected (DCON not set)
+ LPC_USB->DEVCMDSTAT = 0;
+ // Disable USB interrupts
+ NVIC_DisableIRQ(USB_IRQ);
+}
+
+void USBHAL::connect(void) {
+ NVIC_EnableIRQ(USB_IRQ);
+ devCmdStat |= DCON;
+ LPC_USB->DEVCMDSTAT = devCmdStat;
+}
+
+void USBHAL::disconnect(void) {
+ NVIC_DisableIRQ(USB_IRQ);
+ devCmdStat &= ~DCON;
+ LPC_USB->DEVCMDSTAT = devCmdStat;
+}
+
+void USBHAL::configureDevice(void) {
+ // Not required
+}
+
+void USBHAL::unconfigureDevice(void) {
+ // Not required
+}
+
+void USBHAL::EP0setup(uint8_t *buffer) {
+ // Copy setup packet data
+ USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
+}
+
+void USBHAL::EP0read(void) {
+ // Start an endpoint 0 read
+
+ // The USB ISR will call USBDevice_EP0out() when a packet has been read,
+ // the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
+ // read the data.
+
+ ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
+ | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
+}
+
+uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
+ // Complete an endpoint 0 read
+ uint32_t bytesRead;
+
+ // Find how many bytes were read
+ bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
+
+ // Copy data
+ USBMemCopy(buffer, ct->out, bytesRead);
+ return bytesRead;
+}
+
+
+void USBHAL::EP0readStage(void) {
+ // Not required
+}
+
+void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
+ // Start and endpoint 0 write
+
+ // The USB ISR will call USBDevice_EP0in() when the data has
+ // been written, the USBDevice layer then calls
+ // USBBusInterface_EP0getWriteResult() to complete the transaction.
+
+ // Copy data
+ USBMemCopy(ct->in, buffer, size);
+
+ // Start transfer
+ ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
+ | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
+}
+
+
+EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
+ uint8_t bf = 0;
+ uint32_t flags = 0;
+
+ //check which buffer must be filled
+ if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+ // Double buffered
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ bf = 1;
+ } else {
+ bf = 0;
+ }
+ }
+
+ // if isochronous endpoint, T = 1
+ if(endpointState[endpoint].options & ISOCHRONOUS)
+ {
+ flags |= CMDSTS_T;
+ }
+
+ //Active the endpoint for reading
+ ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
+ | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
+ return EP_PENDING;
+}
+
+EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
+
+ uint8_t bf = 0;
+
+ if (!(epComplete & EP(endpoint)))
+ return EP_PENDING;
+ else {
+ epComplete &= ~EP(endpoint);
+
+ //check which buffer has been filled
+ if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+ // Double buffered (here we read the previous buffer which was used)
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ bf = 0;
+ } else {
+ bf = 1;
+ }
+ }
+
+ // Find how many bytes were read
+ *bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));
+
+ // Copy data
+ USBMemCopy(data, ct->out, *bytesRead);
+ return EP_COMPLETED;
+ }
+}
+
+void USBHAL::EP0getWriteResult(void) {
+ // Not required
+}
+
+void USBHAL::EP0stall(void) {
+ ep[0].in[0] = CMDSTS_S;
+ ep[0].out[0] = CMDSTS_S;
+}
+
+void USBHAL::setAddress(uint8_t address) {
+ devCmdStat &= ~DEV_ADDR_MASK;
+ devCmdStat |= DEV_ADDR(address);
+ LPC_USB->DEVCMDSTAT = devCmdStat;
+}
+
+EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
+ uint32_t flags = 0;
+ uint32_t bf;
+
+ // Validate parameters
+ if (data == NULL) {
+ return EP_INVALID;
+ }
+
+ if (endpoint > LAST_PHYSICAL_ENDPOINT) {
+ return EP_INVALID;
+ }
+
+ if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
+ return EP_INVALID;
+ }
+
+ if (size > endpointState[endpoint].maxPacket) {
+ return EP_INVALID;
+ }
+
+ if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+ // Double buffered
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ bf = 1;
+ } else {
+ bf = 0;
+ }
+ } else {
+ // Single buffered
+ bf = 0;
+ }
+
+ // Check if already active
+ if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
+ return EP_INVALID;
+ }
+
+ // Check if stalled
+ if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
+ return EP_STALLED;
+ }
+
+ // Copy data to USB RAM
+ USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
+
+ // Add options
+ if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
+ flags |= CMDSTS_RF;
+ }
+
+ if (endpointState[endpoint].options & ISOCHRONOUS) {
+ flags |= CMDSTS_T;
+ }
+
+ // Add transfer
+ ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
+ endpointState[endpoint].buffer[bf]) \
+ | CMDSTS_NBYTES(size) | CMDSTS_A | flags;
+
+ return EP_PENDING;
+}
+
+EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
+ uint32_t bf;
+
+ // Validate parameters
+ if (endpoint > LAST_PHYSICAL_ENDPOINT) {
+ return EP_INVALID;
+ }
+
+ if (OUT_EP(endpoint)) {
+ return EP_INVALID;
+ }
+
+ if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+ // Double buffered // TODO: FIX THIS
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ bf = 1;
+ } else {
+ bf = 0;
+ }
+ } else {
+ // Single buffered
+ bf = 0;
+ }
+
+ // Check if endpoint still active
+ if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
+ return EP_PENDING;
+ }
+
+ // Check if stalled
+ if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
+ return EP_STALLED;
+ }
+
+ return EP_COMPLETED;
+}
+
+void USBHAL::stallEndpoint(uint8_t endpoint) {
+
+ // FIX: should this clear active bit?
+ if (IN_EP(endpoint)) {
+ ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
+ ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
+ } else {
+ ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
+ ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
+ }
+}
+
+void USBHAL::unstallEndpoint(uint8_t endpoint) {
+ if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+ // Double buffered
+ if (IN_EP(endpoint)) {
+ ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
+ ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
+
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
+ } else {
+ ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
+ }
+ } else {
+ ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
+ ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
+
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
+ } else {
+ ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
+ }
+ }
+ } else {
+ // Single buffered
+ if (IN_EP(endpoint)) {
+ ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
+ } else {
+ ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
+ }
+ }
+}
+
+bool USBHAL::getEndpointStallState(unsigned char endpoint) {
+ if (IN_EP(endpoint)) {
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
+ return true;
+ }
+ } else {
+ if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
+ return true;
+ }
+ }
+ } else {
+ if (LPC_USB->EPINUSE & EP(endpoint)) {
+ if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
+ return true;
+ }
+ } else {
+ if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
+ uint32_t tmpEpRamPtr;
+
+ if (endpoint > LAST_PHYSICAL_ENDPOINT) {
+ return false;
+ }
+
+ // Not applicable to the control endpoints
+ if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
+ return false;
+ }
+
+ // Allocate buffers in USB RAM
+ tmpEpRamPtr = epRamPtr;
+
+ // Must be 64 byte aligned
+ tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
+
+ if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
+ // Out of memory
+ return false;
+ }
+
+ // Allocate first buffer
+ endpointState[endpoint].buffer[0] = tmpEpRamPtr;
+ tmpEpRamPtr += maxPacket;
+
+ if (!(options & SINGLE_BUFFERED)) {
+ // Must be 64 byte aligned
+ tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
+
+ if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
+ // Out of memory
+ return false;
+ }
+
+ // Allocate second buffer
+ endpointState[endpoint].buffer[1] = tmpEpRamPtr;
+ tmpEpRamPtr += maxPacket;
+ }
+
+ // Commit to this USB RAM allocation
+ epRamPtr = tmpEpRamPtr;
+
+ // Remaining endpoint state values
+ endpointState[endpoint].maxPacket = maxPacket;
+ endpointState[endpoint].options = options;
+
+ // Enable double buffering if required
+ if (options & SINGLE_BUFFERED) {
+ LPC_USB->EPBUFCFG &= ~EP(endpoint);
+ } else {
+ // Double buffered
+ LPC_USB->EPBUFCFG |= EP(endpoint);
+ }
+
+ // Enable interrupt
+ LPC_USB->INTEN |= EP(endpoint);
+
+ // Enable endpoint
+ unstallEndpoint(endpoint);
+ return true;
+}
+
+void USBHAL::remoteWakeup(void) {
+ // Clearing DSUS bit initiates a remote wakeup if the
+ // device is currently enabled and suspended - otherwise
+ // it has no effect.
+ LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
+}
+
+
+static void disableEndpoints(void) {
+ uint32_t logEp;
+
+ // Ref. Table 158 "When a bus reset is received, software
+ // must set the disable bit of all endpoints to 1".
+
+ for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
+ ep[logEp].out[0] = CMDSTS_D;
+ ep[logEp].out[1] = CMDSTS_D;
+ ep[logEp].in[0] = CMDSTS_D;
+ ep[logEp].in[1] = CMDSTS_D;
+ }
+
+ // Start of USB RAM for endpoints > 0
+ epRamPtr = usbRamPtr;
+}
+
+
+
+void USBHAL::_usbisr(void) {
+ instance->usbisr();
+}
+
+void USBHAL::usbisr(void) {
+ // Start of frame
+ if (LPC_USB->INTSTAT & FRAME_INT) {
+ // Clear SOF interrupt
+ LPC_USB->INTSTAT = FRAME_INT;
+
+ // SOF event, read frame number
+ SOF(FRAME_NR(LPC_USB->INFO));
+ }
+
+ // Device state
+ if (LPC_USB->INTSTAT & DEV_INT) {
+ LPC_USB->INTSTAT = DEV_INT;
+
+ if (LPC_USB->DEVCMDSTAT & DSUS_C) {
+ // Suspend status changed
+ LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
+ if((LPC_USB->DEVCMDSTAT & DSUS) != 0) {
+ suspendStateChanged(1);
+ }
+ }
+
+ if (LPC_USB->DEVCMDSTAT & DRES_C) {
+ // Bus reset
+ LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
+
+ suspendStateChanged(0);
+
+ // Disable endpoints > 0
+ disableEndpoints();
+
+ // Bus reset event
+ busReset();
+ }
+ }
+
+ // Endpoint 0
+ if (LPC_USB->INTSTAT & EP(EP0OUT)) {
+ // Clear EP0OUT/SETUP interrupt
+ LPC_USB->INTSTAT = EP(EP0OUT);
+
+ // Check if SETUP
+ if (LPC_USB->DEVCMDSTAT & SETUP) {
+ // Clear Active and Stall bits for EP0
+ // Documentation does not make it clear if we must use the
+ // EPSKIP register to achieve this, Fig. 16 and NXP reference
+ // code suggests we can just clear the Active bits - check with
+ // NXP to be sure.
+ ep[0].in[0] = 0;
+ ep[0].out[0] = 0;
+
+ // Clear EP0IN interrupt
+ LPC_USB->INTSTAT = EP(EP0IN);
+
+ // Clear SETUP (and INTONNAK_CI/O) in device status register
+ LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
+
+ // EP0 SETUP event (SETUP data received)
+ EP0setupCallback();
+ } else {
+ // EP0OUT ACK event (OUT data received)
+ EP0out();
+ }
+ }
+
+ if (LPC_USB->INTSTAT & EP(EP0IN)) {
+ // Clear EP0IN interrupt
+ LPC_USB->INTSTAT = EP(EP0IN);
+
+ // EP0IN ACK event (IN data sent)
+ EP0in();
+ }
+
+ for (uint8_t num = 2; num < 5*2; num++) {
+ if (LPC_USB->INTSTAT & EP(num)) {
+ LPC_USB->INTSTAT = EP(num);
+ epComplete |= EP(num);
+ if ((instance->*(epCallback[num - 2]))()) {
+ epComplete &= ~EP(num);
+ }
+ }
+ }
+}
+
+#endif