#include "joystick.h" #include "process_joystick.h" #include "analog.h" #include <string.h> #include <math.h> bool process_joystick(uint16_t keycode, keyrecord_t *record) { switch (keycode) { case JS_BUTTON0 ... JS_BUTTON_MAX: if (record->event.pressed) { register_joystick_button(keycode - JS_BUTTON0); } else { unregister_joystick_button(keycode - JS_BUTTON0); } return false; } return true; } __attribute__((weak)) void joystick_task(void) { if (process_joystick_analogread()) { joystick_flush(); } } uint16_t savePinState(pin_t pin) { #ifdef __AVR__ uint8_t pinNumber = pin & 0xF; return ((PORTx_ADDRESS(pin) >> pinNumber) & 0x1) << 1 | ((DDRx_ADDRESS(pin) >> pinNumber) & 0x1); #elif defined(PROTOCOL_CHIBIOS) /* The pin configuration is backed up in the following format : bit 15 9 8 7 6 5 4 3 2 1 0 |unused|ODR|IDR|PUPDR|OSPEEDR|OTYPER|MODER| */ return ((PAL_PORT(pin)->MODER >> (2 * PAL_PAD(pin))) & 0x3) | (((PAL_PORT(pin)->OTYPER >> (1 * PAL_PAD(pin))) & 0x1) << 2) | (((PAL_PORT(pin)->OSPEEDR >> (2 * PAL_PAD(pin))) & 0x3) << 3) | (((PAL_PORT(pin)->PUPDR >> (2 * PAL_PAD(pin))) & 0x3) << 5) | (((PAL_PORT(pin)->IDR >> (1 * PAL_PAD(pin))) & 0x1) << 7) | (((PAL_PORT(pin)->ODR >> (1 * PAL_PAD(pin))) & 0x1) << 8); #else return 0; #endif } void restorePinState(pin_t pin, uint16_t restoreState) { #if defined(PROTOCOL_LUFA) uint8_t pinNumber = pin & 0xF; PORTx_ADDRESS(pin) = (PORTx_ADDRESS(pin) & ~_BV(pinNumber)) | (((restoreState >> 1) & 0x1) << pinNumber); DDRx_ADDRESS(pin) = (DDRx_ADDRESS(pin) & ~_BV(pinNumber)) | ((restoreState & 0x1) << pinNumber); #elif defined(PROTOCOL_CHIBIOS) PAL_PORT(pin)->MODER = (PAL_PORT(pin)->MODER & ~(0x3 << (2 * PAL_PAD(pin)))) | (restoreState & 0x3) << (2 * PAL_PAD(pin)); PAL_PORT(pin)->OTYPER = (PAL_PORT(pin)->OTYPER & ~(0x1 << (1 * PAL_PAD(pin)))) | ((restoreState >> 2) & 0x1) << (1 * PAL_PAD(pin)); PAL_PORT(pin)->OSPEEDR = (PAL_PORT(pin)->OSPEEDR & ~(0x3 << (2 * PAL_PAD(pin)))) | ((restoreState >> 3) & 0x3) << (2 * PAL_PAD(pin)); PAL_PORT(pin)->PUPDR = (PAL_PORT(pin)->PUPDR & ~(0x3 << (2 * PAL_PAD(pin)))) | ((restoreState >> 5) & 0x3) << (2 * PAL_PAD(pin)); PAL_PORT(pin)->IDR = (PAL_PORT(pin)->IDR & ~(0x1 << (1 * PAL_PAD(pin)))) | ((restoreState >> 7) & 0x1) << (1 * PAL_PAD(pin)); PAL_PORT(pin)->ODR = (PAL_PORT(pin)->ODR & ~(0x1 << (1 * PAL_PAD(pin)))) | ((restoreState >> 8) & 0x1) << (1 * PAL_PAD(pin)); #else return; #endif } __attribute__((weak)) bool process_joystick_analogread() { return process_joystick_analogread_quantum(); } bool process_joystick_analogread_quantum() { #if JOYSTICK_AXES_COUNT > 0 for (int axis_index = 0; axis_index < JOYSTICK_AXES_COUNT; ++axis_index) { if (joystick_axes[axis_index].input_pin == JS_VIRTUAL_AXIS) { continue; } // save previous input pin status as well uint16_t inputSavedState = savePinState(joystick_axes[axis_index].input_pin); // disable pull-up resistor writePinLow(joystick_axes[axis_index].input_pin); // if pin was a pull-up input, we need to uncharge it by turning it low // before making it a low input setPinOutput(joystick_axes[axis_index].input_pin); wait_us(10); // save and apply output pin status uint16_t outputSavedState = 0; if (joystick_axes[axis_index].output_pin != JS_VIRTUAL_AXIS) { // save previous output pin status outputSavedState = savePinState(joystick_axes[axis_index].output_pin); setPinOutput(joystick_axes[axis_index].output_pin); writePinHigh(joystick_axes[axis_index].output_pin); } uint16_t groundSavedState = 0; if (joystick_axes[axis_index].ground_pin != JS_VIRTUAL_AXIS) { // save previous output pin status groundSavedState = savePinState(joystick_axes[axis_index].ground_pin); setPinOutput(joystick_axes[axis_index].ground_pin); writePinLow(joystick_axes[axis_index].ground_pin); } wait_us(10); setPinInput(joystick_axes[axis_index].input_pin); wait_us(10); # if defined(__AVR__) || defined(PROTOCOL_CHIBIOS) int16_t axis_val = analogReadPin(joystick_axes[axis_index].input_pin); # else // default to resting position int16_t axis_val = joystick_axes[axis_index].mid_digit; # endif // test the converted value against the lower range int32_t ref = joystick_axes[axis_index].mid_digit; int32_t range = joystick_axes[axis_index].min_digit; int32_t ranged_val = ((axis_val - ref) * -JOYSTICK_RESOLUTION) / (range - ref); if (ranged_val > 0) { // the value is in the higher range range = joystick_axes[axis_index].max_digit; ranged_val = ((axis_val - ref) * JOYSTICK_RESOLUTION) / (range - ref); } // clamp the result in the valid range ranged_val = ranged_val < -JOYSTICK_RESOLUTION ? -JOYSTICK_RESOLUTION : ranged_val; ranged_val = ranged_val > JOYSTICK_RESOLUTION ? JOYSTICK_RESOLUTION : ranged_val; if (ranged_val != joystick_status.axes[axis_index]) { joystick_status.axes[axis_index] = ranged_val; joystick_status.status |= JS_UPDATED; } // restore output, ground and input status if (joystick_axes[axis_index].output_pin != JS_VIRTUAL_AXIS) { restorePinState(joystick_axes[axis_index].output_pin, outputSavedState); } if (joystick_axes[axis_index].ground_pin != JS_VIRTUAL_AXIS) { restorePinState(joystick_axes[axis_index].ground_pin, groundSavedState); } restorePinState(joystick_axes[axis_index].input_pin, inputSavedState); } #endif return true; }