#ifdef ISSI_ENABLE #include <stdlib.h> #include <stdint.h> #include <util/delay.h> #include <avr/sfr_defs.h> #include <avr/io.h> #include <util/twi.h> #include "issi.h" #include "print.h" #include "TWIlib.h" #define ISSI_ADDR_DEFAULT 0xE8 #define ISSI_REG_CONFIG 0x00 #define ISSI_REG_CONFIG_PICTUREMODE 0x00 #define ISSI_REG_CONFIG_AUTOPLAYMODE 0x08 #define ISSI_CONF_PICTUREMODE 0x00 #define ISSI_CONF_AUTOFRAMEMODE 0x04 #define ISSI_CONF_AUDIOMODE 0x08 #define ISSI_REG_PICTUREFRAME 0x01 #define ISSI_REG_SHUTDOWN 0x0A #define ISSI_REG_AUDIOSYNC 0x06 #define ISSI_COMMANDREGISTER 0xFD #define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine' uint8_t control[8][9] = { {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, }; ISSIDeviceStruct *issi_devices[4] = {0, 0, 0, 0}; #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif #define I2C_WRITE 0 #define F_SCL 400000UL // SCL frequency #define Prescaler 1 #define TWBR_val ((((F_CPU / F_SCL) / Prescaler) - 16 ) / 2) uint8_t i2c_start(uint8_t address) { // reset TWI control register TWCR = 0; // transmit START condition TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN); // wait for end of transmission while( !(TWCR & (1<<TWINT)) ); // check if the start condition was successfully transmitted if((TWSR & 0xF8) != TW_START){ return 1; } // load slave address into data register TWDR = address; // start transmission of address TWCR = (1<<TWINT) | (1<<TWEN); // wait for end of transmission while( !(TWCR & (1<<TWINT)) ); // check if the device has acknowledged the READ / WRITE mode uint8_t twst = TW_STATUS & 0xF8; if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1; return 0; } uint8_t i2c_write(uint8_t data) { // load data into data register TWDR = data; // start transmission of data TWCR = (1 << TWINT) | (1 << TWEN); // wait for end of transmission while (!(TWCR & (1 << TWINT))) ; if ((TWSR & 0xF8) != TW_MT_DATA_ACK) { return 1; } return 0; } uint8_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length) { TWBR = (uint8_t)TWBR_val; if (i2c_start(address | I2C_WRITE)) return 1; for (uint16_t i = 0; i < length; i++) { if (i2c_write(data[i])) return 1; } // transmit STOP condition TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO); return 0; } void setFrame(uint8_t device, uint8_t frame) { static uint8_t current_frame = -1; if(current_frame != frame){ uint8_t payload[] = { ISSI_ADDR_DEFAULT | device << 1, ISSI_COMMANDREGISTER, frame }; TWITransmitData(payload, sizeof(payload), 0, 1); } // static uint8_t current_frame = 0xFF; // if(current_frame == frame){ // // return; // } // uint8_t payload[2] = { ISSI_COMMANDREGISTER, frame }; // i2c_transmit(ISSI_ADDR_DEFAULT | device << 1, payload, 2); // current_frame = frame; } void writeRegister8(uint8_t device, uint8_t frame, uint8_t reg, uint8_t data) { // Set the frame setFrame(device, frame); // Write to the register uint8_t payload[] = { ISSI_ADDR_DEFAULT | device << 1, reg, data }; TWITransmitData(payload, sizeof(payload), 0, 1); } // void activateLED(uint8_t matrix, uint8_t cx, uint8_t cy, uint8_t pwm) // { // xprintf("activeLED: %02X %02X %02X %02X\n", matrix, cy, cx, pwm); // uint8_t x = cx - 1; // funciton takes 1 based counts, but we need 0... // uint8_t y = cy - 1; // creating them once for less confusion // if(pwm == 0){ // cbi(control[matrix][y], x); // }else{ // sbi(control[matrix][y], x); // } // uint8_t device = (matrix & 0x06) >> 1; // uint8_t control_reg = (y << 1) | (matrix & 0x01); // uint8_t pwm_reg = 0; // switch(matrix & 0x01){ // case 0: // pwm_reg = 0x24; // break; // case 1: // pwm_reg = 0x2C; // break; // } // pwm_reg += (y << 4) + x; // xprintf(" device: %02X\n", device); // xprintf(" control: %02X %02X\n", control_reg, control[matrix][y]); // xprintf(" pwm: %02X %02X\n", pwm_reg, pwm); // writeRegister8(device, 0, control_reg, control[matrix][y]); // writeRegister8(device, 0, control_reg + 0x12, control[matrix][y]); // writeRegister8(device, 0, pwm_reg, pwm); // } void activateLED(uint8_t matrix, uint8_t cx, uint8_t cy, uint8_t pwm) { uint8_t device_addr = (matrix & 0x06) >> 1; ISSIDeviceStruct *device = issi_devices[device_addr]; if(device == 0){ return; } // xprintf("activeLED: %02X %02X %02X %02X\n", matrix, cy, cx, pwm); uint8_t x = cx - 1; // funciton takes 1 based counts, but we need 0... uint8_t y = cy - 1; // creating them once for less confusion uint8_t control_reg = (y << 1) | (matrix & 0x01); if(pwm == 0){ cbi(device->led_ctrl[control_reg], x); cbi(device->led_blink_ctrl[control_reg], x); }else{ sbi(device->led_ctrl[control_reg], x); sbi(device->led_blink_ctrl[control_reg], x); } uint8_t pwm_reg = 0; switch(matrix & 0x01){ case 0: pwm_reg = 0x00; break; case 1: pwm_reg = 0x08; break; } pwm_reg += (y << 4) + x; // xprintf(" device_addr: %02X\n", device_addr); // xprintf(" control: %02X %02X\n", control_reg, control[matrix][y]); // xprintf(" pwm: %02X %02X\n", pwm_reg, pwm); // writeRegister8(device_addr, 0, control_reg, control[matrix][y]); device->led_pwm[pwm_reg] = pwm; device->led_dirty = 1; // writeRegister8(device_addr, 0, control_reg + 0x12, control[matrix][y]); // writeRegister8(device_addr, 0, pwm_reg, pwm); } void update_issi(uint8_t device_addr, uint8_t blocking) { // This seems to take about 6ms ISSIDeviceStruct *device = issi_devices[device_addr]; if(device != 0){ if(device->fn_dirty){ device->fn_dirty = 0; setFrame(device_addr, ISSI_BANK_FUNCTIONREG); TWITransmitData(&device->fn_device_addr, sizeof(device->fn_registers) + 2, 0, 1); } if(device->led_dirty){ device->led_dirty = 0; setFrame(device_addr, 0); TWITransmitData(&device->led_device_addr, 0xB6, 0, blocking); } } } void issi_init(void) { // Set LED_EN/SDB high to enable the chip xprintf("Enabing SDB on pin: %d\n", LED_EN_PIN); _SFR_IO8((LED_EN_PIN >> 4) + 1) &= ~_BV(LED_EN_PIN & 0xF); // IN _SFR_IO8((LED_EN_PIN >> 4) + 2) |= _BV(LED_EN_PIN & 0xF); // HI TWIInit(); for(uint8_t device_addr = 0; device_addr < 4; device_addr++){ xprintf("ISSI Init device: %d\n", device_addr); // If this device has been previously allocated, free it if(issi_devices[device_addr] != 0){ free(issi_devices[device_addr]); } // Try to shutdown the device, if this fails skip this device writeRegister8(device_addr, ISSI_BANK_FUNCTIONREG, ISSI_REG_SHUTDOWN, 0x00); while (!isTWIReady()){_delay_us(1);} if(TWIInfo.errorCode != 0xFF){ xprintf("ISSI init failed %d %02X %02X\n", device_addr, TWIInfo.mode, TWIInfo.errorCode); continue; } // Allocate the device structure - calloc zeros it for us ISSIDeviceStruct *device = (ISSIDeviceStruct *)calloc(sizeof(ISSIDeviceStruct) * 2, 1); issi_devices[device_addr] = device; device->fn_device_addr = ISSI_ADDR_DEFAULT | device_addr << 1; device->fn_register_addr = 0; device->led_device_addr = ISSI_ADDR_DEFAULT | device_addr << 1; device->led_register_addr = 0; // set dirty bits so that all of the buffered data is written out device->fn_dirty = 1; device->led_dirty = 1; update_issi(device_addr, 1); // Set the function register to picture mode // device->fn_reg[ISSI_REG_CONFIG] = ISSI_REG_CONFIG_PICTUREMODE; writeRegister8(device_addr, ISSI_BANK_FUNCTIONREG, ISSI_REG_SHUTDOWN, 0x01); } // Shutdown and set all registers to 0 // writeRegister8(device_addr, ISSI_BANK_FUNCTIONREG, ISSI_REG_SHUTDOWN, 0x00); // for(uint8_t bank = 0; bank <= 7; bank++){ // for (uint8_t reg = 0x00; reg <= 0xB3; reg++) { // writeRegister8(device_addr, bank, reg, 0x00); // } // } // for (uint8_t reg = 0; reg <= 0x0C; reg++) { // writeRegister8(device_addr, ISSI_BANK_FUNCTIONREG, reg, 0x00); // } // writeRegister8(device_addr, ISSI_BANK_FUNCTIONREG, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE); // writeRegister8(device_addr, ISSI_BANK_FUNCTIONREG, ISSI_REG_SHUTDOWN, 0x01); // picture mode // writeRegister8(ISSI_BANK_FUNCTIONREG, 0x01, 0x01); //Enable blink // writeRegister8(ISSI_BANK_FUNCTIONREG, 0x05, 0x48B); //Enable Breath } #endif