/* Copyright 2016 flabbergast <s3+flabbergast@sdfeu.org> Copyright 2017 jpetermans <tibcmhhm@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * LED controller code * IS31FL3731C matrix LED driver from ISSI * datasheet: http://www.issi.com/WW/pdf/31FL3731C.pdf */ #include <ch.h> #include <hal.h> #include "print.h" #include "led.h" #include "host.h" #include "led_controller.h" #include "suspend.h" #include "usb_main.h" /* Infinity60 LED MAP - digits mean "row" and "col", i.e. 45 means C4-5 in the IS31 datasheet, matrix A 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27* 28 31 32 33 34 35 36 37 38 41 42 43 44 45 46 47 48 51 52 53 54 55 56 57 58 61 62 63 64 65 66 67 68 71 72 73 74 75 76 77* 78 81 82 83 84 85 86 87 *Unused in Alphabet Layout */ /* each page has 0xB4 bytes 0 - 0x11: LED control (on/off): order: CA1, CB1, CA2, CB2, .... (CA - matrix A, CB - matrix B) CAn controls Cn-8 .. Cn-1 (LSbit) 0x12 - 0x23: blink control (like "LED control") 0x24 - 0xB3: PWM control: byte per LED, 0xFF max on order same as above (CA 1st row (8bytes), CB 1st row (8bytes), ...) */ // Which LED should be used for CAPS LOCK indicator #if !defined(CAPS_LOCK_LED_ADDRESS) #define CAPS_LOCK_LED_ADDRESS 46 #endif #if !defined(NUM_LOCK_LED_ADDRESS) #define NUM_LOCK_LED_ADDRESS 85 #endif /* Which LED should breathe during sleep */ #if !defined(BREATHE_LED_ADDRESS) #define BREATHE_LED_ADDRESS CAPS_LOCK_LED_ADDRESS #endif /* ================= * ChibiOS I2C setup * ================= */ static const I2CConfig i2ccfg = { 400000 // clock speed (Hz); 400kHz max for IS31 }; /* ============== * variables * ============== */ // internal communication buffers uint8_t tx[2] __attribute__((aligned(2))); uint8_t rx[1] __attribute__((aligned(2))); // buffer for sending the whole page at once (used also as a temp buffer) uint8_t full_page[0xB4+1] = {0}; // LED mask (which LEDs are present, selected by bits) // IC60 pcb uses only CA matrix. // Each byte is a control pin for 8 leds ordered 8-1 const uint8_t all_on_leds_mask[0x12] = { 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0x7F, 0x00, 0x00, 0x00 }; // array to hold brightness pwm steps const uint8_t pwm_levels[5] = { 0x00, 0x16, 0x4E, 0xA1, 0xFF }; // array to write to pwm register uint8_t pwm_register_array[9] = {0}; /* ============================ * communication functions * ============================ */ msg_t is31_select_page(uint8_t page) { tx[0] = IS31_COMMANDREGISTER; tx[1] = page; return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, tx, 2, NULL, 0, TIME_US2I(IS31_TIMEOUT)); } msg_t is31_write_data(uint8_t page, uint8_t *buffer, uint8_t size) { is31_select_page(page); return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, buffer, size, NULL, 0, TIME_US2I(IS31_TIMEOUT)); } msg_t is31_write_register(uint8_t page, uint8_t reg, uint8_t data) { is31_select_page(page); tx[0] = reg; tx[1] = data; return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, tx, 2, NULL, 0, TIME_US2I(IS31_TIMEOUT)); } msg_t is31_read_register(uint8_t page, uint8_t reg, uint8_t *result) { is31_select_page(page); tx[0] = reg; return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, tx, 1, result, 1, TIME_US2I(IS31_TIMEOUT)); } /* ======================== * initialise the IS31 chip * ======================== */ void is31_init(void) { // just to be sure that it's all zeroes __builtin_memset(full_page,0,0xB4+1); // zero function page, all registers (assuming full_page is all zeroes) is31_write_data(IS31_FUNCTIONREG, full_page, 0xD + 1); // disable hardware shutdown palSetPadMode(GPIOB, 16, PAL_MODE_OUTPUT_PUSHPULL); palSetPad(GPIOB, 16); chThdSleepMilliseconds(10); // software shutdown is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_ON); chThdSleepMilliseconds(10); // zero function page, all registers is31_write_data(IS31_FUNCTIONREG, full_page, 0xD + 1); chThdSleepMilliseconds(10); // software shutdown disable (i.e. turn stuff on) is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_OFF); chThdSleepMilliseconds(10); // zero all LED registers on all 8 pages uint8_t i; for(i=0; i<8; i++) { is31_write_data(i, full_page, 0xB4 + 1); chThdSleepMilliseconds(5); } } /* ================== * LED control thread * ================== */ #define LED_MAILBOX_NUM_MSGS 5 static msg_t led_mailbox_queue[LED_MAILBOX_NUM_MSGS]; mailbox_t led_mailbox; static THD_WORKING_AREA(waLEDthread, 256); static THD_FUNCTION(LEDthread, arg) { (void)arg; chRegSetThreadName("LEDthread"); uint8_t i; uint8_t control_register_word[2] = {0};//2 bytes: register address, byte to write uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes //persistent status variables uint8_t pwm_step_status, page_status, capslock_status, numlock_status; //mailbox variables uint8_t temp, msg_type; uint8_t msg_args[3]; msg_t msg; // initialize persistent variables pwm_step_status = 4; //full brightness page_status = 0; //start frame 0 (all off/on) numlock_status = (host_keyboard_leds() & (1<<USB_LED_NUM_LOCK)) ? 1 : 0; capslock_status = (host_keyboard_leds() & (1<<USB_LED_CAPS_LOCK)) ? 1 : 0; while(true) { // wait for a message (asynchronous) // (messages are queued (up to LED_MAILBOX_NUM_MSGS) if they can't // be processed right away chMBFetchTimeout(&led_mailbox, &msg, TIME_INFINITE); msg_type = msg & 0xFF; //first byte is action information msg_args[0] = (msg >> 8) & 0xFF; msg_args[1] = (msg >> 16) & 0XFF; msg_args[2] = (msg >> 24) & 0xFF; switch (msg_type){ case SET_FULL_ROW: //write full byte to pin address, msg_args[1] = pin #, msg_args[0] = 8 bits to write //writes only to currently displayed page write_led_byte(page_status, msg_args[1], msg_args[0]); break; case OFF_LED: //on/off/toggle single led, msg_args[0] = row/col of led, msg_args[1] = page set_led_bit(msg_args[1], control_register_word, msg_args[0], 0); break; case ON_LED: set_led_bit(msg_args[1], control_register_word, msg_args[0], 1); break; case TOGGLE_LED: set_led_bit(msg_args[1], control_register_word, msg_args[0], 2); break; case BLINK_OFF_LED: //on/off/toggle single led, msg_args[0] = row/col of led set_led_bit(msg_args[1], control_register_word, msg_args[0], 4); break; case BLINK_ON_LED: set_led_bit(msg_args[1], control_register_word, msg_args[0], 5); break; case BLINK_TOGGLE_LED: set_led_bit(msg_args[1], control_register_word, msg_args[0], 6); break; case TOGGLE_ALL: //turn on/off all leds, msg_args = unused is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_ON); chThdSleepMilliseconds(5); is31_read_register(0, 0x00, &temp); is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_OFF); led_control_reg[0] = 0; //toggle led mask based on current state (temp) if (temp==0 || page_status > 0) { __builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12); } else { __builtin_memset(led_control_reg+1, 0, 0x12); } is31_write_data(0, led_control_reg, 0x13); if (page_status > 0) { is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0); page_status=0; //maintain lock leds, reset to off and force recheck to blink of all leds toggled on numlock_status = 0; capslock_status = 0; led_set(host_keyboard_leds()); } break; case TOGGLE_BACKLIGHT: //msg_args[0] = on/off //populate 9 byte rows to be written to each pin, first byte is register (pin) address if (msg_args[0] == 1) { __builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8); } else { __builtin_memset(pwm_register_array+1, 0, 8); } for(i=0; i<8; i++) { //first byte is register address, every 0x10 9 bytes is A-matrix pwm pins pwm_register_array[0] = 0x24 + (i * 0x10); is31_write_data(0,pwm_register_array,9); } break; case DISPLAY_PAGE: //msg_args[0] = page to toggle on if (page_status != msg_args[0]) { is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_args[0]); page_status = msg_args[0]; //maintain lock leds, reset to off and force recheck for new page numlock_status = 0; capslock_status = 0; led_set(host_keyboard_leds()); } break; case RESET_PAGE: //led_args[0] = page to reset led_control_reg[0] = 0; __builtin_memset(led_control_reg+1, 0, 0x12); is31_write_data(msg_args[0], led_control_reg, 0x13); //repeat for blink register led_control_reg[0] = 0x12; is31_write_data(msg_args[0], led_control_reg, 0x13); break; case TOGGLE_NUM_LOCK: //msg_args[0] = 0 or 1, off/on if (numlock_status != msg_args[0]) { set_lock_leds(NUM_LOCK_LED_ADDRESS, msg_args[0], page_status); numlock_status = msg_args[0]; } break; case TOGGLE_CAPS_LOCK: //msg_args[0] = 0 or 1, off/on if (capslock_status != msg_args[0]) { set_lock_leds(CAPS_LOCK_LED_ADDRESS, msg_args[0], page_status); capslock_status = msg_args[0]; } break; case STEP_BRIGHTNESS: //led_args[0] = step up (1) or down (0) switch (msg_args[0]) { case 0: if (pwm_step_status == 0) { pwm_step_status = 4; } else { pwm_step_status--; } break; case 1: if (pwm_step_status == 4) { pwm_step_status = 0; } else { pwm_step_status++; } break; } //populate 8 byte arrays to write on each pin //first byte is register address, every 0x10 9 bytes are A-matrix pwm pins __builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8); for(i=0; i<8; i++) { pwm_register_array[0] = 0x24 + (i * 0x10); is31_write_data(0,pwm_register_array,9); } break; } } } /* ============================== * led processing functions * ============================== */ void set_led_bit (uint8_t page, uint8_t *led_control_word, uint8_t led_addr, uint8_t action) { //returns 2 bytes: led control register address and byte to write //action: 0 - off, 1 - on, 2 - toggle, 4 - blink on, 5 - blink off, 6 - toggle blink uint8_t control_reg_addr, column_bit, column_byte, temp, blink_bit; //check for valid led address if (led_addr < 0 || led_addr > 87 || led_addr % 10 > 8) { return; } blink_bit = action>>2;//check for blink bit action &= ~(1<<2); //strip blink bit //led_addr tens column is pin#, ones column is bit position in 8-bit mask control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-matrix is every other byte control_reg_addr += blink_bit == 1 ? 0x12 : 0x00;//if blink_bit, shift 12 bytes to blink register is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_ON); chThdSleepMilliseconds(5); is31_read_register(page, control_reg_addr, &temp);//maintain status of leds on this byte is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_OFF); column_bit = 1<<(led_addr % 10 - 1); column_byte = temp; switch(action) { case 0: column_byte &= ~column_bit; break; case 1: column_byte |= column_bit; break; case 2: column_byte ^= column_bit; break; } //return word to be written in register led_control_word[0] = control_reg_addr; led_control_word[1] = column_byte; is31_write_data (page, led_control_word, 0x02); } void write_led_byte (uint8_t page, uint8_t row, uint8_t led_byte) { uint8_t led_control_word[2] = {0};//register address and on/off byte led_control_word[0] = (row - 1 ) * 0x02;// A-matrix is every other byte led_control_word[1] = led_byte; is31_write_data(page, led_control_word, 0x02); } void write_led_page (uint8_t page, uint8_t *user_led_array, uint8_t led_count) { uint8_t i; uint8_t pin, col; uint8_t led_control_register[0x13] = {0}; __builtin_memset(led_control_register,0,13); for(i=0;i<led_count;i++){ //shift pin by 1 for led register 0x00 address pin = ((user_led_array[i] / 10) % 10 - 1 ) * 2 + 1; col = user_led_array[i] % 10 - 1; led_control_register[pin] |= 1<<(col); } is31_write_data(page, led_control_register, 0x13); } void set_lock_leds(uint8_t led_addr, uint8_t led_action, uint8_t page) { uint8_t temp; uint8_t led_control_word[2] = {0}; //blink if all leds are on if (page == 0) { is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_ON); chThdSleepMilliseconds(5); is31_read_register(0, 0x00, &temp); is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_OFF); if (temp == 0xFF) { led_action |= (1<<2); //set blink bit } } set_led_bit(page,led_control_word,led_addr,led_action); } /* ===================== * hook into user keymap * ===================== */ void led_controller_init(void) { uint8_t i; /* initialise I2C */ /* I2C pins */ palSetPadMode(GPIOB, 0, PAL_MODE_ALTERNATIVE_2); // PTB0/I2C0/SCL palSetPadMode(GPIOB, 1, PAL_MODE_ALTERNATIVE_2); // PTB1/I2C0/SDA /* start I2C */ i2cStart(&I2CD1, &i2ccfg); // try high drive (from kiibohd) I2CD1.i2c->C2 |= I2Cx_C2_HDRS; // try glitch fixing (from kiibohd) I2CD1.i2c->FLT = 4; chThdSleepMilliseconds(10); /* initialise IS31 chip */ is31_init(); //set Display Option Register so all pwm intensity is controlled from page 0 //enable blink and set blink period to 0.27s x rate is31_write_register(IS31_FUNCTIONREG, IS31_REG_DISPLAYOPT, IS31_REG_DISPLAYOPT_INTENSITY_SAME + IS31_REG_DISPLAYOPT_BLINK_ENABLE + 4); /* set full pwm on page 1 */ pwm_register_array[0] = 0; __builtin_memset(pwm_register_array+1, 0xFF, 8); for(i=0; i<8; i++) { pwm_register_array[0] = 0x24 + (i * 0x10);//first byte of 9 bytes must be register address is31_write_data(0, pwm_register_array, 9); chThdSleepMilliseconds(5); } /* enable breathing when the displayed page changes */ // Fade-in Fade-out, time = 26ms * 2^N, N=3 is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, (3<<4)|3); is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, IS31_REG_BREATHCTRL2_ENABLE|3); /* more time consuming LED processing should be offloaded into * a thread, with asynchronous messaging. */ chMBObjectInit(&led_mailbox, led_mailbox_queue, LED_MAILBOX_NUM_MSGS); chThdCreateStatic(waLEDthread, sizeof(waLEDthread), LOWPRIO, LEDthread, NULL); }