/* Copyright 2020 shela * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "quantum.h" #include "command.h" #include "action_pseudo.h" static uint8_t send_key_shift_bit[SHIFT_BIT_SIZE]; /* * Action Pseudo Process. * Gets the keycode in the same position of the specified layer. * The keycode is sent after conversion according to the conversion keymap. */ void action_pseudo_process(keyrecord_t *record, uint8_t base_layer, const uint16_t (*keymap)[2]) { uint8_t prev_shift; uint16_t keycode; uint16_t pseudo_keycode; /* Get keycode from specified layer */ keycode = keymap_key_to_keycode(base_layer, record->event.key); prev_shift = get_mods() & MOD_MASK_SHIFT; if (record->event.pressed) { /* If magic commands entered, keycode is not converted */ if (IS_COMMAND()) { if (prev_shift) { add_shift_bit(keycode); } register_code(keycode); return; } if (prev_shift) { pseudo_keycode = convert_keycode(keymap, keycode, true); dprintf("pressed: %02X, converted: %04X\n", keycode, pseudo_keycode); add_shift_bit(keycode); if (IS_LSFT(pseudo_keycode)) { register_code(QK_LSFT ^ pseudo_keycode); } else { /* Delete shift mod temporarily */ unregister_mods(prev_shift); register_code(pseudo_keycode); register_mods(prev_shift); } } else { pseudo_keycode = convert_keycode(keymap, keycode, false); dprintf("pressed: %02X, converted: %04X\n", keycode, pseudo_keycode); if (IS_LSFT(pseudo_keycode)) { register_weak_mods(MOD_LSFT); register_code(QK_LSFT ^ pseudo_keycode); /* Prevent key repeat to avoid unintended output on Windows */ unregister_code(QK_LSFT ^ pseudo_keycode); unregister_weak_mods(MOD_LSFT); } else { register_code(pseudo_keycode); } } } else { if (get_shift_bit(keycode)) { del_shift_bit(keycode); pseudo_keycode = convert_keycode(keymap, keycode, true); } else { pseudo_keycode = convert_keycode(keymap, keycode, false); } dprintf("released: %02X, converted: %04X\n", keycode, pseudo_keycode); if (IS_LSFT(pseudo_keycode)) { unregister_code(QK_LSFT ^ pseudo_keycode); } else { unregister_code(pseudo_keycode); } } } /* Convert keycode according to the keymap */ uint16_t convert_keycode(const uint16_t (*keymap)[2], uint16_t keycode, bool shift_modded) { uint16_t pseudo_keycode = 0x00; /* default value */ switch (keycode) { case KC_A ... KC_CAPSLOCK: #if defined(__AVR__) if (shift_modded) { pseudo_keycode = pgm_read_word(&keymap[keycode][1]); } else { pseudo_keycode = pgm_read_word(&keymap[keycode][0]); } #else if (shift_modded) { pseudo_keycode = keymap[keycode][1]; } else { pseudo_keycode = keymap[keycode][0]; } #endif break; } /* If pseudo keycode is the default value, use the keycode as it is */ if (pseudo_keycode == 0x00) { if (shift_modded) { pseudo_keycode = S(keycode); } else { pseudo_keycode = keycode; } } return pseudo_keycode; } uint8_t get_shift_bit(uint16_t keycode) { if ((keycode >> 3) < SHIFT_BIT_SIZE) { return send_key_shift_bit[keycode >> 3] & (1 << (keycode & 7)); } else { dprintf("get_shift_bit: Can't get shift bit. keycode: %02X\n", keycode); return 0; } } void add_shift_bit(uint16_t keycode) { if ((keycode >> 3) < SHIFT_BIT_SIZE) { send_key_shift_bit[keycode >> 3] |= (1 << (keycode & 7)); } else { dprintf("add_shift_bit: Can't add shift bit. keycode: %02X\n", keycode); } } void del_shift_bit(uint16_t keycode) { if ((keycode >> 3) < SHIFT_BIT_SIZE) { send_key_shift_bit[keycode >> 3] &= ~(1 << (keycode & 7)); } else { dprintf("del_shift_bit: Can't delete shift bit. keycode: %02X\n", keycode); } }