/*
Copyright 2019 worthlessowl
based on work by:
Jun Wako <wakojun@gmail.com>
Cole Markham <cole@ccmcomputing.net>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#include "owlet60.h"
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "config.h"
#include "timer.h"

#if (MATRIX_COLS <= 8)
#    define print_matrix_header()  print("\nr/c 01234567\n")
#    define print_matrix_row(row)  print_bin_reverse8(matrix_get_row(row))
#    define matrix_bitpop(i)       bitpop(matrix[i])
#    define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
#    define print_matrix_header()  print("\nr/c 0123456789ABCDEF\n")
#    define print_matrix_row(row)  print_bin_reverse16(matrix_get_row(row))
#    define matrix_bitpop(i)       bitpop16(matrix[i])
#    define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
#    define print_matrix_header()  print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
#    define print_matrix_row(row)  print_bin_reverse32(matrix_get_row(row))
#    define matrix_bitpop(i)       bitpop32(matrix[i])
#    define ROW_SHIFTER  ((uint32_t)1)
#endif

static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_select_pins[3] = MATRIX_COL_SELECT_PINS;
static const uint8_t dat_pin = MATRIX_COL_DATA_PIN;

/* matrix state(1:on, 0:off) */
static matrix_row_t raw_matrix[MATRIX_ROWS]; //raw values
static matrix_row_t matrix[MATRIX_ROWS]; //raw values

/* 2d array containing binary representation of its index */
static const uint8_t num_in_binary[8][3] = {
    {0, 0, 0},
    {0, 0, 1},
    {0, 1, 0},
    {0, 1, 1},
    {1, 0, 0},
    {1, 0, 1},
    {1, 1, 0},
    {1, 1, 1},
};

static void select_col_analog(uint8_t col);
static void mux_pin_control(const uint8_t binary[]);
void debounce_init(uint8_t num_rows);
void debounce(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, bool changed);


__attribute__ ((weak))
void matrix_init_user(void) {}

__attribute__ ((weak))
void matrix_scan_user(void) {}

__attribute__ ((weak))
void matrix_init_kb(void) {
  matrix_init_user();
}

__attribute__ ((weak))
void matrix_scan_kb(void) {
  matrix_scan_user();
}

inline
uint8_t matrix_rows(void)
{
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void)
{
    return MATRIX_COLS;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    // Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
    // switch blocker installed and the switch is always pressed.
#ifdef MATRIX_MASKED
    return matrix[row] & matrix_mask[row];
#else
    return matrix[row];
#endif
}

void matrix_print(void)
{
    print_matrix_header();

    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        phex(row); print(": ");
        print_matrix_row(row);
        print("\n");
    }
}

uint8_t matrix_key_count(void)
{
    uint8_t count = 0;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        count += matrix_bitpop(i);
    }
    return count;
}

// uses standard row code
static void select_row(uint8_t row)
{
    setPinOutput(row_pins[row]);
    writePinLow(row_pins[row]);
}

static void unselect_row(uint8_t row)
{
    setPinInputHigh(row_pins[row]);
}

static void unselect_rows(void)
{
    for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
        setPinInputHigh(row_pins[x]);
    }
}

static void init_pins(void) {   // still need some fixing, this might not work
  unselect_rows();              // with the loop
  /*
  for (uint8_t x = 0; x < MATRIX_COLS; x++) {
    setPinInputHigh(col_pins[x]);
  }
  */
  setPinInputHigh(dat_pin);
}

static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
{
    // Store last value of row prior to reading
    matrix_row_t last_row_value = current_matrix[current_row];

    // Clear data in matrix row
    current_matrix[current_row] = 0;

    // Select row and wait for row selecton to stabilize
    select_row(current_row);
    wait_us(30);

    // For each col...
    for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {

        // Select the col pin to read (active low)
        select_col_analog(col_index);
        wait_us(30);
        uint8_t pin_state = readPin(dat_pin);

        // Populate the matrix row with the state of the col pin
        current_matrix[current_row] |=  pin_state ? 0 : (ROW_SHIFTER << col_index);
    }

    // Unselect row
    unselect_row(current_row);

    return (last_row_value != current_matrix[current_row]);
}


void matrix_init(void) {

    // initialize key pins
    init_pins();

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        raw_matrix[i] = 0;
        matrix[i] = 0;
    }

    debounce_init(MATRIX_ROWS);

    matrix_init_quantum();

    setPinInput(D5);
    setPinInput(B0);
}

// modified for per col read matrix scan
uint8_t matrix_scan(void)
{
    bool changed = false;

    for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
        changed |= read_cols_on_row(raw_matrix, current_row);
    }

    debounce(raw_matrix, matrix, MATRIX_ROWS, changed);

    matrix_scan_quantum();
    return (uint8_t)changed;
}

/*
uint8_t matrix_scan(void)
{
  bool changed = false;

#if (DIODE_DIRECTION == COL2ROW)
  // Set row, read cols
  for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
    changed |= read_cols_on_row(raw_matrix, current_row);
  }
#endif

  debounce(raw_matrix, matrix, MATRIX_ROWS, changed);

  matrix_scan_quantum();
  return (uint8_t)changed;
}
*/

static void select_col_analog(uint8_t col) {
    switch(col) {

        case 0:
            mux_pin_control(num_in_binary[0]);
            break;
        case 1:
            mux_pin_control(num_in_binary[1]);
            break;
        case 2:
            mux_pin_control(num_in_binary[2]);
            break;
        case 3:
            mux_pin_control(num_in_binary[3]);
            break;
        case 4:
            mux_pin_control(num_in_binary[4]);
            break;
        case 5:
            mux_pin_control(num_in_binary[5]);
            break;
        case 6:
            mux_pin_control(num_in_binary[6]);
            break;
        case 7:
            mux_pin_control(num_in_binary[7]);
            break;
        default:
            break;
    }
}

static void mux_pin_control(const uint8_t binary[]) {
    // set pin0
    setPinOutput(col_select_pins[0]);
    if(binary[2] == 0) {
        writePinLow(col_select_pins[0]);
    }
    else {
        writePinHigh(col_select_pins[0]);
    }
    // set pin1
    setPinOutput(col_select_pins[1]);
    if(binary[1] == 0) {
        writePinLow(col_select_pins[1]);
    }
    else {
        writePinHigh(col_select_pins[1]);
    }
    // set pin2
    setPinOutput(col_select_pins[2]);
    if(binary[0] == 0) {
        writePinLow(col_select_pins[2]);
    }
    else {
        writePinHigh(col_select_pins[2]);
    }
}