/* Copyright 2017 Balz Guenat based on work by Jun Wako <wakojun@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "timer.h" #include "matrix.h" #include "led.h" // Timer resolution check #if (1000000/TIMER_RAW_FREQ > 20) # error "Timer resolution(>20us) is not enough for HHKB matrix scan tweak on V-USB." #endif /* * Pin configuration for ATMega32U4 * * Row: PD4-6, 7(~EN) * Col: PB0-2, 3(Z5 ~EN), 4(Z4 ~EN) * Key: PC6(pull-uped) * Hys: PC7 */ static inline void KEY_ENABLE(void) { (PORTD &= ~(1<<7)); } static inline void KEY_UNABLE(void) { (PORTD |= (1<<7)); } static inline bool KEY_STATE(void) { return (PINC & (1<<6)); } static inline void KEY_HYS_ON(void) { (PORTC |= (1<<7)); } static inline void KEY_HYS_OFF(void) { (PORTC &= ~(1<<7)); } static inline void KEY_INIT(void) { /* Col */ DDRB |= 0x1F; /* Key: input with pull-up */ DDRC &= ~(1<<6); PORTC |= (1<<6); /* Hys */ DDRC |= (1<<7); /* Row */ DDRD |= 0xF0; KEY_UNABLE(); KEY_HYS_OFF(); } static inline void SET_ROW(uint8_t ROW) { // set row with unabling key PORTD = (PORTD & 0x0F) | (1<<7) | ((ROW & 0x07) << 4); } static inline void SET_COL(uint8_t COL) { // |PB3(Z5 ~EN)|PB4(Z4 ~EN) // --------|-----------|----------- // Col:0-7 |high |low // Col:8-F |low |high PORTB = (PORTB & 0xE0) | ((COL & 0x08) ? 1<<4 : 1<<3) | (COL & 0x07); } static uint32_t matrix_last_modified = 0; // matrix state buffer(1:on, 0:off) static matrix_row_t *matrix; static matrix_row_t *matrix_prev; static matrix_row_t _matrix0[MATRIX_ROWS]; static matrix_row_t _matrix1[MATRIX_ROWS]; __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } void matrix_init(void) { KEY_INIT(); // LEDs on CapsLock and Insert DDRB |= (1<<5) | (1<<6); PORTB |= (1<<5) | (1<<6); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix0[i] = 0x00; for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix1[i] = 0x00; matrix = _matrix0; matrix_prev = _matrix1; matrix_init_quantum(); } uint8_t matrix_scan(void) { matrix_row_t *tmp; tmp = matrix_prev; matrix_prev = matrix; matrix = tmp; uint8_t row, col; for (col = 0; col < MATRIX_COLS; col++) { SET_COL(col); for (row = 0; row < MATRIX_ROWS; row++) { //KEY_SELECT(row, col); SET_ROW(row); _delay_us(2); // Not sure this is needed. This just emulates HHKB controller's behaviour. if (matrix_prev[row] & (1<<col)) { KEY_HYS_ON(); } _delay_us(10); // NOTE: KEY_STATE is valid only in 20us after KEY_ENABLE. // If V-USB interrupts in this section we could lose 40us or so // and would read invalid value from KEY_STATE. uint8_t last = TIMER_RAW; KEY_ENABLE(); // Wait for KEY_STATE outputs its value. _delay_us(2); if (KEY_STATE()) { matrix[row] &= ~(1<<col); } else { matrix[row] |= (1<<col); } // Ignore if this code region execution time elapses more than 20us. // MEMO: 20[us] * (TIMER_RAW_FREQ / 1000000)[count per us] // MEMO: then change above using this rule: a/(b/c) = a*1/(b/c) = a*(c/b) if (TIMER_DIFF_RAW(TIMER_RAW, last) > 20/(1000000/TIMER_RAW_FREQ)) { matrix[row] = matrix_prev[row]; } _delay_us(5); KEY_HYS_OFF(); KEY_UNABLE(); // NOTE: KEY_STATE keep its state in 20us after KEY_ENABLE. // This takes 25us or more to make sure KEY_STATE returns to idle state. _delay_us(75); } if (matrix[row] ^ matrix_prev[row]) { matrix_last_modified = timer_read32(); } } matrix_scan_quantum(); return 1; } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { #if (MATRIX_COLS <= 8) print("r/c 01234567\n"); #elif (MATRIX_COLS <= 16) print("r/c 0123456789ABCDEF\n"); #elif (MATRIX_COLS <= 32) print("r/c 0123456789ABCDEF0123456789ABCDEF\n"); #endif for (uint8_t row = 0; row < MATRIX_ROWS; row++) { #if (MATRIX_COLS <= 8) xprintf("%02X: %08b%s\n", row, bitrev(matrix_get_row(row)), #elif (MATRIX_COLS <= 16) xprintf("%02X: %016b%s\n", row, bitrev16(matrix_get_row(row)), #elif (MATRIX_COLS <= 32) xprintf("%02X: %032b%s\n", row, bitrev32(matrix_get_row(row)), #endif #ifdef MATRIX_HAS_GHOST matrix_has_ghost_in_row(row) ? " <ghost" : "" #else "" #endif ); } }